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Abstract 
 

 Changes in the mass distribution around some point on the Earth’s surface induce 

corresponding changes to the magnitude and direction of the gravity vector at that 

location. The nine-tensor derivative of the gravity vector, or gravity gradient, is sensitive 

to very small changes in the gravity vector. With some assumptions, continuous 

measurement of the gravity gradient using a gravity gradiometer (GGI) is used to 

determine the location of a mass change in the local area near the instrument. This 

investigation sought to determine the effectiveness, operating characteristics, and 

limitations of a physical perimeter security system that uses an array of GGIs to detect 

and locate a human intruder. Results are obtained via computer simulations utilizing the 

closed form solution for calculating a gravity gradient given an object’s size and mass, as 

well as industry-predicted future GGI performance characteristics. 
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PERIMETER SECURITY AND INTRUDER DETECTION USING GRAVITY 

GRADIOMETRY: A FEASIBILITY STUDY 

 
 
 

I. Introduction 
 
 

 History has shown that when man truly wants to be somewhere—whether it is the 

top of Mount Everest or the moon—he can get there, but only with enough time to 

prepare for and complete the journey. This applies to less ambitious destinations as well, 

like the inside of a well-stocked jewelry store after operating hours. Though buffers like 

well-built outer walls and bars over the windows exist to prevent unwanted intrusion, any 

thief could treat those devices as deterrents and simply bypass them if given enough time 

to do so. The key, then, to any system intending to provide security by limiting access to 

a given region is not only a buffer, but also an alarm system capable of detecting 

unwanted intrusion to limit the amount of buffer exposure time to a given threat. 

Continuing the example, inch thick window bars are not formidable to a dedicated 

burglar with a hacksaw, but they are when an alarm sounds at the start of the intrusion 

effort and the prospective thief has only a few minutes to work before police arrive. This 

principle has spawned many types of intruder detection devices, all with the goal of 

detecting an individual entering an area of interest and initiating some alarm before the 

intruder can achieve his malicious objectives.  
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In many cases, perimeter security is not as simple as detecting a jewel thief 

forcefully entering a locked building. The number of industries with an active interest in 

a better perimeter security system is large, and the intended application can be of 

tremendous magnitude and complexity. Optimizing intruder detection for the conditions 

and circumstances of various unique scenarios has driven the development of the 

perimeter intrusion detection system (PIDS), with a suite of contrasting technologies at 

its core. Almost every physical characteristic that defines an individual being at a location 

is currently used, including seismic patterns, a change in the magnetic field, electric field 

interference, infrared sensors, radar, motion detectors, and acoustic devices. All devices 

in use today typically excel in some aspects of intruder detection while falling short in 

others, and none is marketed as the proverbial silver bullet of perimeter security. In every 

case, manufacturers of a specific device recommend a combination of methods working 

together to achieve maximum security over the widest range of possible intrusion 

scenarios. While effective, joining multiple methods is expensive to design, build, and 

operate, and it is usually not feasible to integrate new technology into an already existing 

system. 

So far, however, the application of gravity gradiometry as the core technology in 

a PIDS has remained uninvestigated. Hardly an emerging technology, gravity 

gradiometry seeks to measure the variations in the earth’s gravitational field caused by 

variations in mass. Based on Newton’s Law of Universal Gravitation, gravity 

gradiometry in a PIDS application would utilize a system of accelerometers to 

characterize how the ‘acceleration due to gravity’ term changes at a single location on the 

surface of the earth due to a movement in mass near the device. Because the proportion 
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of an intruder’s mass to the earth’s mass drives the change in acceleration caused by an 

intruding individual or vehicle, the gravity gradient for an intruder at even a modest 

detection range is expected to be extremely small. Due to recent successful efforts to 

improve the sensitivity of gravity gradiometers, the use of gravity gradiometry in a PIDS 

has only recently become a realistic undertaking. 

 Although gravity gradiometry is most likely not a standalone method for 

maximum intruder detection capability, it does offer some considerable advantages over 

its technological peers. Most notably, a gravity gradiometry instrument (GGI) is a 

discrete device free of infrastructure like perimeter-spanning wires or buried sensors 

required by many of the other technologies. Aside from freedom of the maintenance 

demands of a component-laden and widespread system, insertion of a GGI-based PIDS 

into an existing PIDS would produce immediate results. A GGI is a passive device, 

meaning it does not emit a signal to collect data. Passivity is not a characteristic exclusive 

to a GGI among the PIDS variants, but it does offer the advantage of being undetectable 

by a potential intruder, making tampering with or bypassing the device from a distance 

impossible because there is no way to know if it is monitoring a given perimeter or not. 

Since there is no way to block or shield the effect of mass on the gravity gradient, 

detection of intruding mass is possible in every direction without the possibility for 

camouflage. 

 

Problem Statement 

Alluded to earlier, the creation of an all-in-one PIDS is realistically impossible 

since a myriad of application scenarios exist, each with unique required capabilities. With 
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increasing terrorist activity on and around domestic and international holdings, as well as 

the expansion of United States military obligations to many unfriendly corners of the 

world, there has never been greater need for effective perimeter security. The PIDS 

examined in this paper are mainly useful for the detection of an intruder across some 

boundary through which nothing is expected to pass—a circumstance that certainly omits 

many potential terrorism situations, like a suicide bombing in a crowded outdoor market 

or a vehicle bomb parked on the street next to a high-rise building. The circumstances 

included, however, are considerable. Any area of interest enclosed in a perimeter with 

some standoff distance between the interior assets and the perimeter is a good application 

for a GGI-based PIDS, which includes many infrastructure level potential terrorist targets 

like nuclear power plants, oil refineries, water filtration plants, and research centers. 

 Indeed, “Protect Critical Infrastructure” is among the five overarching strategic 

goals identified in the U.S. Department of Homeland Security (DHS) Security Strategic 

Plan for 2008-2013 [1]. In a summary of how various governmental agencies and 

documents define and identify what is “critical infrastructure,” one Congressional 

Research Service (CRS) report explains that while the meaning of “critical infrastructure” 

continues to evolve and varies from administration to administration, the essence is the 

same and has always included things like energy production, transmission, and 

distribution services; facilities using, storing or disposing of nuclear material; postal and 

shipping services; information and telecommunications centers; and the defense 

industrial base [2]. Many of these broad sectors are made up of individual facilities where 

a better PIDS would aid in protecting what is considered critical. 
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 Not only useful to the Homeland Security effort, a better PIDS would have direct 

military application by protecting bases around the world. A few months before the 

terrorist destruction of the World Trade Center in September 2001, forward looking 

congressmen from the House of Representatives held a special Armed Services 

Committee hearing on “Security Against Terrorism On U.S. Military Bases.” In the 

hearing, one base commander from every military service testified about the challenges 

faced in securing a large area of land. Each of the four general officers testifying 

identified perimeter security as their primary concern and made it clear they were aware 

of weaknesses in each of their respective perimeters needing improvement [3]. United 

States Marine Corps Major General David F. Bice, Commanding General of Marine 

Corps Base Camp Pendleton in California, in particular offered a telling statistic to the 

committee, noting about 150 illegal immigrants a year are picked up on his base and said, 

“It shows that anyone can get on our base if they are determined enough” [3]. A better 

PIDS could change the paradigm that intruder access to secure areas is unavoidable.  

 Some of the more devastating terrorist attacks on U.S. military assets occurred 

because malicious individuals were able to get close enough to their targets to inflict 

harm. A truck containing the equivalent of 10 tons of TNT explosive was detonated less 

than 100 feet from the Khobar Towers military housing complex in Saudi Arabia, killing 

19 U.S. servicemen in 1996. Seventeen sailors serving on the USS Cole lost their lives 

when a small vessel set off a bomb after entering the restricted area surrounding the Navy 

ship while it refueled in a Yemeni port in 2000. Neither attack resulted from a PIDS 

failure, but they still emphasize why an effective security system is necessary; tragedy 

will result when anyone can access areas which are supposed to be secure. 
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Figure 1: Khobar Towers Following 1996 Bombing, taken from United States Air 
Force [4] 

 

Development of a GGI-based PIDS promises to result in a better technique for denying 

one of the crucial steps in a chain of steps leading up to a terrorist attack on valuable 

national assets. 

 

Research Objectives 

Since there has been no previous investigation into using gravity gradiometry for 

perimeter security, research objectives will focus on broadly identifying whether the 

technology has potential as a practical method for intruder detection by designing a 

theoretical system. As such, the specific objectives are: 
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1.   Generate a model demonstrating GGI integration into an area where perimeter 
security is needed, and identify calibration requirements. 

 
2.   Develop an algorithm utilizing GGI readings to recognize when an intrusion event 

has occurred. 
 
3.   Create a system for reporting intrusion anomalies and classifying the type of threat 

identified. 
 
 

Various types of GGIs currently exist, and ongoing research continues to examine 

improving the technology to increase instrument sensitivity and expand mobility. GGI 

use within a PIDS offers the distinct advantage of low mobility requirements since the 

device is stationary during the data collection process. Likewise, a perimeter security 

application implies the size of the GGI will not be as great a concern as it might be for an 

aircraft navigation application. Strict volume and weight allowances on board an aircraft, 

for example, means the only GGIs available for use are those small and light enough—

not necessarily the least noisy or easiest to use. Support considerations like power 

requirements and cooling systems are not of interest here since ground installation 

constraints are generally not strict. With these considerations in mind, the level of GGI 

technology used in this investigation is limited to what researchers say will be feasible in 

the future. 

Before creating an algorithm utilizing GGI inputs to detect an intruder, the many 

ways an intruder can approach a secure area—and the numerous types of secure areas—

must be culled to a manageable level. The representative intrusion scenarios serve to 

identify and demonstrate calibration procedures while maintaining broad application to 

specific perimeter security needs. Additionally, the devised scenarios will integrate 
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realistic difficulties, like terrain and weather, associated with the operation of a GGI for 

perimeter security in practice rather than solely on principle. 

False alarms plague all physical security systems, and a GGI-based system should 

be no different. To make an effective system that limits alarms to those actually caused 

by a threat, the algorithm for detecting anomalies must include some reasoning process to 

determine the level of confidence that any given anomaly is a true threat. Since any threat 

would most likely require immediate action, a useful perimeter security system will 

provide quality information in a timely, organized fashion to allow further action. 
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II. Background 
 

Existing PIDS 

There are hundreds of PIDS currently on the market designed to fulfill almost 

every conceivable intruder scenario. To limit this discussion to a manageable level, 

gravity gradiometry is compared only to those technologies competing to directly fill the 

same security niche. With the problem statement in mind, that security scenario will 

loosely consist of an intruder on foot attempting to penetrate the well-defined perimeter 

of something defined as critical infrastructure. ‘Well defined perimeter’ in this case 

means the perimeter is clearly marked and without nearby obstructions, as might be the 

case around a military base. According to a researcher for Sandia National Laboratories, 

defining six physical and environmental factors completely characterizes any given 

perimeter security situation and includes aspects like topography, background noise, and 

the type of soil [5]. Although those aspects will eventually be important to define, for 

now the scenario is clear enough by saying it will be outside, cover a large area of cleared 

land, have a perimeter hundreds of meters long, and require a permanent system. 

Several types of fence-integrated sensors exist and generally work by transferring 

the energy of an intruder interacting in some way with a fence to a more detectable form 

of energy, like a vibration sensor or a strain sensitive cable [6]. Though useful in 

determining whether a boundary has been compromised, it is a fundamentally different 

type of PIDS than the volumetric sensor category a GGI falls into. Volumetric sensors 

seek to track intruder movement through a secure area by using an invisible detection 

source, like a change in gravity gradient. Unlike a fence-mounted device, volumetric 
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sensors determine the presence of intruders without direct contact. So even though they 

fall well within the realm of perimeter intruder detection, fence sensors will not be 

discussed to avoid comparing unlike things. The primary categories of PIDS utilizing 

volumetric sensors are radar, seismic, infrared, and optical. An overview of each type of 

sensor follows with a focus on the weaknesses of each type of device. 

 

     Radar 

Radar operates in the 100MHz to 300GHz electromagnetic energy band and works 

by transmitting a signal and waiting for the signal to reflect back to the receiver by 

striking an object in the field of view. A processor uses the pattern of reflected energy to 

provide information about the size and location of the object. Using radar in a PIDS 

application requires the signal reflected back to the radar to be greater than the noise 

generated by normal operation of the device. The ratio of those values is called the signal 

to noise ratio (SNR) and characterizes radar performance, with higher values indicating 

better system performance. SNR is calculated using Equation 1, where Pt is the 

transmitter power, Gt is the transmitter gain, Gr is the receiver gain, λ is the wavelength 

of the radio wave, σ is radar cross section (RCS) of the target, r is the distance from the 

transmitter to the target, k is Boltzmann’s constant (1.381·10-23J·K-1), T is the receiver 

noise equivalent temperature, and Bn is the processing noise bandwidth [7]. 

4
 

Equation 1: Classic Radar Equation [7] 
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Of all the terms in the classic radar equation, the only terms controlled by the target are 

RCS value and separation distance, with the rest of the terms constants or radar device 

characteristics. An object’s RCS value is not a measure of the true presented physical 

cross sectional area, but rather a measure of the object’s apparent size to the radar 

receiver. Butler [7] identifies some typical RCS values in Table 1. 

Table 1: Radar Cross Section Values for Typical Targets, taken from Butler [7] 

Target RCS (m2) 

Crawler 0.03 ~ 0.1 

Pedestrian 0.3 ~ 1.5 

Light Ground Vehicle 5 ~ 50 

Heavy Ground Vehicle 20 ~ 1000 

Small Airplane 5 ~ 20 

 

Higher frequency devices detect objects with greater resolution, but with higher 

attenuation and thus lower range, while the opposite resolution and range characteristics 

are true for lower frequency radars. Exceedingly useful when used correctly, radar is only 

a reliable detection method when a clear line of sight to the secure area is available. 

Potential downfalls include inability to differentiate between an intruder and ground 

objects, heavy precipitation conditions, and blockage by buildings or other objects. 

Unless the area of interest is flat and objects like rocks and trees are well characterized 

and unchanging, radar would have a difficult time detecting an intruder moving slowly 

and close to the ground, particularly if steps are taken to reduce the intruder’s radar 

signature through careful choice of clothing. One major disadvantage of some radar 

systems is the need for bulky antennas and numerous, large components [6, 8]. Due to its 
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potential detection range on the order of kilometers, using radar as an intruder early 

warning system has been investigated with a focus on intruder detection in foliage. One 

study successfully demonstrated detection of a human hidden 2m inside a brushy tree line 

at a range of 500m, a powerful capability considering many potential intruders spend time 

surveilling their target before initiating intruding action [9]. 

 

 

Figure 2: Millimeter-Wave Pulsed-Doppler Radar Mounted on MDARS-E Intrusion 
Detection System, taken from Cory, Everett, and Pastore [8] 

 

Figure 2 shows an example of radar used in an intruder detection capacity. The 

MDARS-E remotely controlled vehicle has multiple detection devices mounted to it, 

including the radar shown. With a wavelength in the millimeter range, it does not require 

a large antenna. However, the small wavelength results in high attenuation and a modest 

100m range [8].  

 

     Seismic 

Seismic sensors detect intruders by measuring the seismic waves generated by the 

impact of footsteps or vehicles on the ground. Using seismic waves as part of a PIDS is a 
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complex process made difficult because the ground supports four different types of 

seismic waves that each have different propagation characteristics. Shear and 

compression waves are three-dimensional and propagate in a spherical surface as they 

move away from the point of impact, so amplitude attenuation diminishes with an r-1 

relationship, where r is the distance from the point of impact. Love waves utilize ground 

structure and density characteristics by travelling between channels formed in layered 

soil. Compression, shear, and Love waves are not useful for intruder detection because 

they decay too quickly and can have unpredictable motion based on the soil composition 

[10]. 

 

 

Figure 3: Illustration of Seismic Wave Types, taken from the U.S. Geological  

Survey [12] 
 

The final types of seismic waves, Rayleigh waves, are confined to travel along the 

surface and thus exhibit amplitude decay according to an r-1/2 relationship. This lessoned 

decay over distance, combined with the fact that about 70% of ground impact energy is 

converted to Rayleigh waves (with the remaining 30% used to create shear, compression 

Shear Wave Love Wave

Rayleigh WaveCompression Wave
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and Love waves) make them the best kind of seismic wave to detect intruder 

encroachment [10]. Figure 3 shows an illustration of the four types of seismic waves, and 

helps demonstrate why Rayleigh waves are the most useful for intruder detection. Two 

types of sensors can measure seismic waves—a moving coil electro-dynamic device 

called a geophone, or an accelerometer. The expected frequency range determines which 

device to use, and since an energy source like footsteps is less than 100Hz, geophones are 

the typical sensor used within a PIDS [11]. 

Most effective when used in a sterile environment where influences contributing 

to ground vibration are controllable, the use of seismic activity to detect an outdoor 

intruder is made difficult by anything anchored to the ground and capable of transmitting 

wind vibrations, like trees and other vegetation, telephone poles, and fences. Geophones 

are typically buried to avoid direct wind impingement, but greater burial depth causes 

greater signal attenuation and less detection capability. The middle ground between the 

competing effects of wind noise and attenuation usually occurs just below the surface 

[11]. Even on calm days, any real world location has constant seismic noise. Since 

footsteps result in a relatively low energy wave, the amplitude of the wave with respect to 

the background noise is worthy of concern. Pakhomov and Goldburt [13] point out an 

improved geophone will not improve the SNR when the source of undesired noise is an 

environmental characteristic (as opposed to a sensor design characteristic). Those authors 

describe the best geophone systems as being able to operate in an environment where the 

SNR is 1:1 or greater, and give the resulting theoretical detection ranges for a variety of 

background noise conditions in Table 2 when that signal-to-noise condition is the case. 
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As with any of the PIDS discussed, more robust signal processing can sometimes 

improve the limitations resulting from a noisy environment. 

  

Table 2: Predicted Range Capabilities for a Seismic PIDS, taken from Pakhomov 
and Goldburt [13] 

Background Noise Level Range for SNR=1:1 

Very High 2 - 3m 

High 5 - 6m 

Medium 10 - 15m 

Low 25 - 35m 

Very Low 50- 70m 

Extremely Low 70 - 90m 

 

The ability for the ground to transmit a vibratory signal is heavily dependent on 

the type of soil, so seismic sensors are not an option in every environment, especially 

those areas with loose and inconsistent soil. Leet [14] notes the velocity of seismic waves 

can vary from 650ft/s in sand to 18,700ft/s in granite, but the most likely scenario is a 

heterogeneous soil composition including rocks, sand, and organic material in an 

unpredictable combination. Current literature rigorously defines seismic wave 

propagation, but most presented equations rely on a variety of assumptions precluding 

their application to a real world scenario. Complicating factors include acoustic noise 

contamination, non-geometric signal attenuation, and reflection from unique soil 

structure [10]. When intruder localization is as important as detection, PIDS designers 

use multi-component and arrayed sensors to triangulate the position of a seismic source. 
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That effort is made difficult by unpredictable wave reflections and velocity and can result 

in intruder directional position estimation error as high as 60° [15].  

 

 

Figure 4: SM6-U/B Geophone, taken from Lindgren, Habberstad, and  

Holmberg [16] 

 

Figure 4 shows a photograph of a geophone used in an intruder detection 

application. Device installation is as simple as inserting the metal stake into the ground at 

the desired location. The yellow box contains the bulk of the sensor and sits above the 

ground, while a connecting wire links the geophone to a central processor. Insight into 

how seismic waves travel in a particular environment typically requires a full site 

characterization in advance of installation, so creating a large geophone array can be 

involved and costly. Figure 5 shows a notional three-sensor geophone array where each 

geophone passes information to a processor. Geophone spacing depends on the system 

and site, but greater spacing typically yields more accurate intruder bearing information 

[6, 17].  
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Figure 5: Notional Geophone Layout, based on Perimeter Security Sensor 
Technologies Handbook [6] 

 

          Infrared 

The infrared region of the electromagnetic spectrum encompasses the 0.7-300μm 

wavelength range, bordering the visible band and the microwave band. The ability to use 

infrared energy in a PIDS application stems from the unique property of any object with a 

temperature above absolute zero to radiate energy in the infrared region according to 

Equation 2. In the equation, M is the radiant flux per unit area per unit time, σ is the 

Stefan-Boltzmann constant (5.6704·10-10J·s-1m-2K-4), ε is the object’s emissivity, and T is 

the object’s temperature. Emissivity is the measure of an object’s relative ability to 

radiate absorbed energy, with a value of unity representative of a perfect emitter and 

called a blackbody. Doctor [18] notes clothed people have emissivities of about 0.75, 

meaning they are good radiators of energy.  

 

Equation 2: The Stefan-Boltzmann Law 

 

Geophone To Data 
Collection Area

Processor

6–14 inches
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 An infrared intruder detector works by assuming an intruder has a different 

temperature, and thus different radiant flux, than the surroundings. Equation 3 gives the 

radiant flux difference where the t subscript indicates the target and b subscript indicates 

the background. The equation shows a small difference in temperature between Tt and Tb 

will cause a disproportionately large change in radiant flux due to the fourth power 

dependence on temperature. 

∆  

Equation 3: Difference in Radiant Flux between Two Objects [18] 

 

Adjusting for the change in apparent size of the target as its distance to the sensor 

changes requires modification of the difference in radiant flux equation. Doctor [18] 

gives the relationship for radiant flux density, Fd, in Equation 4 for an infrared detector 

capable of monitoring 2π steradians. Radiant flux density is dependent on the separation 

distance between the target and sensor, r, and presented surface area of the target, A. The 

inverse square relationship means a change in separation distance causes a non-linear 

change to the amount of infrared energy received by a sensor. 

∆
 

Equation 4: Radiant Flux Density of a Target Some Distance from the Sensor [18] 

 

An infrared PIDS uses an array of optically focused sensors to create a grid 

pattern, with each sensor focused on a unique, typically small area dependent on the 

perimeter characteristics. For example, a bird’s eye view of a system designed to detect 

four feet of movement from a 6ft tall and 3ft wide intruder at a range of 30ft and 75° field 
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of coverage would look like Figure 6. That system relies on six sets of two linked 

sensors. When a heat source with enough radiant flux density passes from one of the 

linked sensors to the other, the system logic determines an intruder has entered the field 

of coverage. 

 

Figure 6: Bird’s Eye View of an Infrared Beam Pattern, based on Doctor [18] 

 

Bad weather can significantly attenuate the signal and cause false alarms, and the 

amount and complexity of structures needed to support an array of sensors can be 

significant. Additionally, the observed area must be flat and clear of obstruction to avoid 

places where a slow moving intruder can hide. Passive infrared detection suffers from a 

relatively short detection range of about 100ft, and can be fooled during warm days when 

many objects emit infrared radiation at the same wavelengths as a human [6]. Heat 

signature masking can reduce Tt enough for an intruder to blend in with the background, 
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and hiding behind an object opaque in the infrared energy range can prevent detection of 

any heat signal at all.  

Figure 7 shows an example of an infrared detector used as part of the MDARS-E 

intruder detection system discussed previously. The infrared detector is compact, 

allowing high mobility on a movable arm. Combining multiple detection technologies on 

the vehicle allows operation in normal to low-level light conditions [8].  

 

 

Figure 7: Infrared Detector Mounted on MDARS-E Intrusion Detection System, 
taken from Cory, Everett, and Pastore [8] 

 

All previous discussion of an infrared PIDS referred to a passive infrared (PIR) 

device, so named because the sensor only collects energy information transmitted toward 

it by another source. Active infrared devices for perimeter security do exist, but work by 

generating and transmitting an infrared beam. An object passing between the beam 

generator and the receiver breaks the beam and causes an intruder alarm. Since this 
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device only protects a specific boundary and provides no information about intruder, it is 

not a true volumetric system and will not be included in this discussion. 

 

     Optical 

The final exterior volumetric security method of interest is optical detection. In 

many cases, the human eye is still the best method of determining when an intruder enters 

a protected area. Labor intensive and susceptible to decreased ability caused by fatigue, a 

human detection presence is typically reserved for monitoring major traffic areas since 

the capability of automated systems is reasonable in many perimeter security situations. 

Motion detectors as part of a closed-circuit television system operate on a similar 

principle to the passive infrared detector—though over the visible light band instead of 

the infrared one—by comparing a current image frame to one known to be free of 

anomalies. When some unexpected change in the image is detected, a possible intrusion 

event has occurred. Inconsistent lighting and cluttering of the frame can cause false 

alarms or a lack of alarms depending on the situation, and a system with full coverage 

can be expensive to construct and monitor over time [6, 17].  

Because similar principles govern energy in the visible and infrared bands, 

Equation 4 also describes how well an optical image sensor can see an image. As was 

true for infrared detectors, the ability to see an image in the visible band decreases by the 

inverse of the range squared. Modern video cameras typically have variable focal lengths 

and iris control mechanisms to maintain usefulness across a wide area in changing light 

conditions [17]. Figure 8 shows a photograph of a security camera mounted outdoors. It 
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offers an example of an optical camera capable of capturing a wide viewing angle due to 

a gimbal and mounting location above ground level. 

 

 

Figure 8: Mounted Security Camera Enclosure, taken from Baran, O’Brien, and 
Fung [19] 

 

     Gravity Gradiometry 

Though no GGI-based PIDS exists, familiarity with the concept allows 

conclusions about a theoretical system. The biggest difference between gravity 

gradiometry and other core technologies for intruder detection is the absence of a line of 

sight requirement. This is advantageous because it eases the demand for the secure area 

to have a specific topography and composition, and eliminates the burden of modifying 

large areas of landform before installing a system. Furthermore, no methods exist to 

cloak the change in the gravity gradient caused by the change in system mass of an 

approaching intruder. A GGI observes every direction at all times, reducing the chance of 

intrusion during radar or sensor 'sweeps.’ Although the technologies discussed previously 
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are designed for use with complementary methods, gravity gradiometry offers distinct 

advantages over current security approaches. A GGI-based PIDS could improve overall 

perimeter security capability while reducing the number of sensors required to monitor a 

given area. 

 

Gravity Gradients 

 Measuring and manipulating the gravity gradient, or the nine component spatial 

double derivative of the gravity vector, is what allows a GGI-based PIDS to be useful for 

an intrusion detection application. Newton’s Law of Universal Gravitation states every 

mass is attracted to every other mass with a force given by Equation 5, where F is the 

magnitude of force between the two masses, m1 and m2 are the attracted and attracting 

masses, l is the separating distance between the masses, and G is the gravitational 

constant (6.67428·10-11 m3kg-1s-2). 

 

Equation 5: Newton’s Law of Universal Gravitation 

 

Consider a system comprised of two point masses in a rectangular coordinate system 

where m1 rests at position (x1, y1, z1) and m2 rests some distance l away at position (x2, y2, 

z2), as described pictorially in Figure 9.  
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Figure 9: The Force Vector Described in Rectangular Coordinates, based on 
Hofmann-Wellenhof and Moritz [20] 

 

Hofmann-Wellenhof and Moritz [20] give the three-component force vector in Equation 

6, where X, Y, and Z are the force components and α, β, and γ are the respective angles 

from the coordinate axis to the force vector.  

cos  

cos  

cos  

 

Equation 6: Gravitational Force Vector Components between Two Point  

Masses [20] 

 

A system of spatially variable components is often easiest described by a single potential 

function, φ, mathematically defined by Equation 7. 

X

Z

Y

m2 (x2, y2, z2)

m1 (x1, y1, z1)

F
lγ

β

α



 

25 
 

, ,   

Equation 7: Definition of the Potential Function 

 

In Equation 8, Hofmann-Wellenhof and Moritz [20] give the potential function 

describing Newton’s Law of Universal Gravitation for a simple, two-mass system in the 

previous coordinate system. For simplification, the attracting mass is scaled to unity 

leaving only a single mass term, m [20]. 

 

Equation 8: Gravitational Potential Function of a Simple System [20] 

 

 The previous equation holds for a point-mass in a closed system. Equation 9 

shows Equation 8 expanded to calculate the gravitational potential of multiple point 

masses, where n is the total number of point masses considered.  

 

Equation 9: Potential Function for a Complex System [20] 

 

The equation is simply the sum of each individual mass contribution. If the system is 

continuous, as it would be for any earthly application, the summation from Equation 9 

can be mathematically restated as a volumetric integration covering the bounds of the 

system. The result of such a maneuver is called Newton’s Integral and is given by 

Equation 10 where the mass density, ρ, and volume of integration, dV, replace the mass 

term m. 
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, ,
 

Equation 10: Newton’s Integral [20] 

 

Derivation of the potential function in accordance with Equation 7 yields the gravitational 

force components for a system composed of an infinite distribution of mass. Equation 11 

shows the gravitational force components. 

 

 

z
 

Equation 11: Gravitational Force Components for a Complex System [20] 
 

In accordance with the definition of a potential function, each gravitation force 

component gi of the gravitational force vector gn is given by the first derivative of the 

Equation 10, as shown in Equation 12.  

 

Equation 12: Relation of the Potential Equation to the Gravitational Vector [21] 
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The gravity vector is relatively easy to conceptualize, and is affected by a large mass like 

the mountain seen in Figure 10.  

 

Figure 10: Effect of Variable Topography on the Gravitational Vector at the Earth’s 
Surface, based on Burkard [22] 

 

 The gravitational vector on the surface of a constant density sphere can be 

conceptualized by treating the sphere as a point mass and applying Newton’s Law of 

Universal Gravitation with a separation distance of the radius of the sphere. The vector 

will point toward the center of mass independent of the surface position, as long as a 

constant radius is maintained. The gravitational vector for a complex object with variable 

shape and density will not always point toward the center of mass, instead depending on 

the local mass distribution. The large mass of a mountain on the surface of the Earth in 

Figure 10 influences the gravity vector by pulling it slightly toward the area of greater 

mass. In this way, gn is unique at every location on the Earth’s surface since no mass 

distribution is exactly the same at any two positions.  

Gravity Vector for a 
Constant Density Ellipsoid

Gravity Vector for a Variable 
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 However, realizing any change in the gravitational vector from one spot to 

another is challenging without an exceptionally precise instrument, a difficulty 

exacerbated in areas of relatively even density distributions and gradual topography 

changes. Because it is more responsive to small changes in the gravitational vector, the 

gravity gradient is usually measured instead of the actual gravitational vector. The gravity 

gradient is formed by differentiating the potential function again to form the nine-

component tensor term described by Richeson in Equation 13 [21]. 

 

Equation 13: The Complete Gravitational Gradient [21] 
 

The gravity vector is easy to conceptualize, but the gravitational gradient term is less so. 

For ease of understanding when applied to a system with an already well-known frame of 

reference, the rectangular x, y, z notation is switched to the rectangular north (N), east (E), 

down (D) frame of reference where N corresponds to x, E to y, and -D to z. The 

gravitational gradient with revised notation is in Equation 14. 

 

Equation 14: Complete Gravitation Gradient with NED Notation 

 

To clarify what the components in Equation 14 mean physically, consider the ΓNE 

component: the inner subscript represents the measured component while the outer 

subscript indicates across which direction the measurement is made, so ΓNE is a 
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measurement of the change in the N gravity component in the E direction.  Hofmann-

Wellenhof and Moritz [20] point out that if the location of a gravitational gradient 

measurement is considered to be free space when compared to the density of surrounding 

attractive bodies, the mathematical properties of the potential function form the zero-

value version of Poisson’s equation in Equation 15, a particular form known as Laplace’s 

equation. Since the intended GGI application is above ground and the density of the 

atmosphere at sea level is only about 0.05 percent of the mean density of the earth’s crust, 

this is a reasonable assumption [21]. 

0 

Equation 15: Poisson’s Equation for Gravitational Gradiometry in Free Space [20] 

 

Mickus and Hinojosa [23] note the gravitational gradient tensor forms a symmetric 

matrix, which causes the redundancy of terms described in Equation 16. 

 

 

 

Equation 16: Redundancies in the Gravitational Gradient Tensor [23] 

 

With Equation 15 and Equation 16 in mind, it becomes clear the gravitational gradient 

tensor has only five independent terms when the previous assumptions are included. A 
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fewer number of tensors to measure reduces the instrumentation burden, but provides less 

unique information than a complete independent nine-component derivative would. 

 

 

Figure 11: Rectangular Prism Annotated to Correspond with Equation 17, based on 
Nagy, Papp, and Benedek [24] 

 

Those simplifications also allow derivation of closed form equations to calculate the 

gravity gradient for simple objects. According to Nagy, Papp, and Benedek [24], the 

gravity gradient disturbance tensor for any prism with a uniform density ρ can be 

described by Equation 17. Figure 11 demonstrates the notation used in Equation 17. 

 Equation 17 implies each gravity disturbance gradient tensor calculation results 

from adding eight calculated values—one for each of the prism corners. Note here 

Equation 17 describes the gravitational disturbance gradient—rather than the total 

gravitational gradient—at some point in free space outside of the prism interior. This 

means implementing the equation will result in the gravity gradient contribution of the 

prism only, and not, for example, the total gravity gradient reading if the prism were 
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sitting on the Earth’s surface since the effect of the Earth’s mass would not be included in 

the calculation. 

 

T G∆ρ 1 tan
y y z z

x x r
 

T G∆ρ 1 tan
x x z z

y y r
 

T G∆ρ 1 ln  z z r  

T ∆ 1 ln   

∆ 1 ln   

 

Equation 17: Closed Form Solution for the Independent Gravitational Disturbance 
Gradient Tensors for a Prism [24] 

 

Because Γ represents the total gravity gradient, a gravity disturbance gradient is typically 

described by T. The gravity gradient caused by multiple prisms can be calculated by 

summing the calculated gravity gradient values for each prism. Thus, the gravity gradient 

for objects with a complex shape is approximated by dividing the object into many small 

prisms and summing the calculated gradients for each of the smaller prisms to yield the 

whole object gravitational disturbance gradient.  
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 As an example of what a theoretical gravitational disturbance tensor might look 

like, Rogers [25] calculated a six-component map of the gravitational gradient caused by 

a theoretical 50m × 10m × 6m prism with a uniform density of 1.5g/cm3. Figure 12 shows 

the prism centered on a 250m × 250m grid. If the prism were sitting on the Earth, the x- 

and y-axis would run along the surface while the z-axis would rise into the sky. Figure 13 

shows the value of the independent gravitational gradient tensors at a constant height of 

50m above the reference plane. Note the Tzz tensor is a function of the Txx and Tyy tensors, 

meaning it is not independent and only shown in the figure for reference. The gradient 

map makes it clear that even with a complete, accurate gravitational gradient map in 

hand, determining the physical characteristics of the source object is not intuitive because 

the shape, density, and position of an object are all variable. A small, dense object far 

from a GGI causes similar gradient reading as a large, low-density object close to a GGI. 

Without some idea about at least one of the variables, using gravity gradiometry to 

identify a source object is essentially impossible. 

 

 

Figure 12: Hypothetical Prism, taken from [25] 
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Figure 13: Gravitational Gradiometry Map of a Hypothetical Prism, taken from 
Rogers [25] 

 

Figure 13 describes the strength of gravity gradients in units of Eötvös (Eö), which is 

equivalent to 10-9s-2. Although not a recognized SI unit, the Eötvös is commonly used 

within the gravitational gradiometry community due to the diminutive magnitudes of 

measured gradients. In accordance with Newton’s Law of Universal Gravitation, 1Eö is 

about equal to the gravitational gradient induced by 10 sand granules each with a mass of 

1mg at a distance of 1cm [26]. While it might seem 1Eö is indicative of extreme 

sensitivity in gravitational gradient measurement, an object as massive as a 1000kg rock 

at a distance of 10m only creates a gradient of about 0.10Eö, a result owing to the 

derivative of Newton’s Law of Universal Gravitation having an l -3 relationship.  
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 It should be noted that ‘gravitational’ and ‘gravity’ do not technically refer to the 

same thing, with the former describing only the relationship defined by Newton’s Law of 

Universal Gravitation and the latter describing the sum of all acceleration contributions in 

some system. The earth offers a good example of the difference, since the gravity vector 

is actually the sum of the acceleration induced by mass attraction (gravitation) and the 

centripetal acceleration caused by the earth’s rotation. Richeson [21] explains the 

centripetal acceleration term is a constant value dependent on latitude and angular 

velocity, implying it can be treated as a bias and ignored in this investigation. Therefore, 

there will be no further distinction between ‘gravity’ and ‘gravitational.’ 

 Measurement and mapping of gravitational gradients is not a new concept and has 

been applied across a variety of industries. The first device for gravity gradient 

measurement was the product of Hungarian scientist Baron Roland von Eötvös. In 1890, 

he employed it to deduce the topography beneath a frozen lakebed, with accurate results 

confirmed by physical measurement in warmer months. However, the sensitive nature of 

the instrument made it bulky and created difficulty getting accurate readings in 

unfavorable weather conditions. Additionally, the multiple component gradient maps 

were almost undecipherable by inexperienced technicians causing gravity gradiometry to 

be altogether abandoned in favor of measuring the actual gravity vector even though it 

contained less information. Initial interest in gravity measurements stemmed from a 

desire to see beneath the earth and identify valuable density anomalies like salt domes, 

precious metal concentrations, and oil and gas fields. Today, gravity gradiometry 
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research continues in the areas of hypersonic aircraft navigation, airplane terrain 

avoidance, underground structure detection, and valuable resource detection [21, 27-30].  

 

Existing Gravity Gradient Instruments 

 A complete investigation into the history and types of GGIs is not necessary in 

this study since the only parameter of interest is how well the best modern instrument 

measures gravity gradients (though the author recommends the thorough but readable 

treatment given to the development of GGIs by Rogers [25]). It is clear from the earlier 

discussion of the relationship between mass, separation distance, and gravity gradient 

magnitude that a PIDS using gravity gradiometry requires an extremely sensitive 

instrument capable of collecting data about every second. Development of modern GGIs 

has focused on implementation within navigation and geological surveying systems on an 

aircraft, driving a requirement for mobility. Such an environment is characterized by 

constant noise in the form of vibration and turbulence, so the goal of creating a highly 

sensitive GGI is not a trivial one. 

 Two approaches have emerged for creating a GGI with adequate sensitivity levels 

for a PIDS application. The first takes advantage of the Meissner effect and flux 

quantization and is classified as a superconducting gravity gradiometer (SGG). GGIs 

utilizing this technology and built for use onboard an aircraft have demonstrated 

sensitivities of 1Eö/Hz-1/2. However, designers of the most advanced SGG instrument 

have noted that if the mobility requirements were removed, designing a device with a 

sensitivity of 10-3Eö/Hz-1/2 is “quite possible” [31]. The second promising approach 
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utilizes atom interferometry to measure the path of an atom as it is subjected to external 

forces. Although the measured sensitivities of such an instrument are lower than the 

superconducting method at about 5Eö/Hz-1/2, research remains robust [32]. The following 

development of a GGI-based PIDS assumes a stationary GGI exists capable of 10-3 

Eö/Hz-1/2 sensitivity levels. 

 

Perimeter Security System Metrics 

 The primary value of any PIDS lies in the system’s ability to detect an intruder 

accurately across a wide range of operating conditions and entry methods while 

minimizing false alarms, all with little or no operator control. It seems the effort to 

determine the best PIDS among several competing systems is an opportunity to apply the 

scientific method by having some impartial authority set up multiple systems in the same 

area and compare how each system reacts to a variety of intruder scenarios. This 

approach is a sound one in cases where the area of intended use closely resembles the test 

area, but widespread variation between PIDS performance occurs based on topography, 

vegetation, wildlife, background noise, meteorological conditions, and type of soil or 

pavement. Williams [5] notes no such thing as a “typical site” exists since the particular 

combination of the factors previously listed make each site unique. He cautions 

extracting broad performance data from comparative, single-site testing, since a non-site 

specific test could result in unrealistic conclusions. Although cost is not a consideration 

during this early stage of a GGI-based PIDS technology evaluation, comparing multiple 

systems at every site requiring a PIDS is clearly cost prohibitive. 
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 The security industry has developed a set of metrics used to characterize how well 

a PIDS works, though the type of metric used depends in large part on what role the PIDS 

is expected to fulfill.  In their analysis of various volumetric intrusion detection 

technologies, Lester and Smith [33] describe the four objectives of the widespread 

“Defense in Depth” approach to perimeter security to be (1) Deter the intruder (2) Detect 

the intruder (3) Delay the intruder, and (4) Respond to the intruder. Although (3) lends 

itself to a physical barrier like a chain link fence or a barbwire impediment, an effective 

PIDS would contribute to the other three aspects of perimeter security. 

 The quantitative values used to describe how well a PIDS works is 

straightforward, though some understanding of statistics is necessary to frame the various 

values in the correct context. The most widespread measures of performance are the 

probability of detection, usually denoted by Pd and defined by Equation 18, and the false 

alarm rate, typically abbreviated FAR and defined by Equation 19.  

 
 

 

Equation 18: Definition of Detection Probability [34] 

 

     
        ·  

 

Equation 19: Definition of False Alarm Rate [34] 

 

 Horner and Leach [35] point out that requiring a specific percentage of attacks to 

be detected is not the same as specifying a Pd since no confidence intervals are specified. 

In other words, Pd could be estimated using the outcome of a series of tests and Equation 
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18, but the estimated Pd would only become the true Pd when the number of tests reaches 

infinity. To avoid confusion, the detection rate (DR) is often used in place of Pd when the 

value is estimated through experimentation as it more accurately reflects the significance 

of the value. For example, a PIDS detecting an intruder five out of five times gives a DR 

of 100%, but the limited test does not mean the system Pd is 100% as well. 

 Since the Pd is one of the main PIDS performance characteristics, a variety of 

statistical methods are used to calculate the true Pd at some confidence level given the DR 

and number of tests performed. Leach [36] considers the normal approximation to 

binomial, chi-squared, and Poisson approximation distributions in an effort to select the 

best statistical approach to take. Unless the true Pd is known beforehand, the number of 

tests is large, and there are more than five attempts not detected in the course of all the 

tests, none of the methods is suitable when Pd is expected to be very close to unity. Leach 

[36] notes a complicated, binomial-type expression can be applied if there is equal 

likelihood the true value of Pd is between zero and one. Equation 20 calculates the best 

guess for the detection probability, Pd Best Guess, using this method with the equal 

likelihood assumption for a 95% confidence interval, meaning an experimenter can 

expect 95% of the PIDS tested to have a true Pd value greater than Pd Best Guess given some 

experimental data. 

   
  1
  2

 

Equation 20: Estimation of Pd Given Experimental Data 

 



 

39 
 

While the assumption of an even Pd distribution might seem unreasonable, Leach [36] 

explains commissioned PIDS are more likely to show Pd values near the extremes of zero 

and unity which works to balance the distribution and make the assumption more valid.  

 The FAR is also subject to confusion because manufacturers have varying 

definitions of a false alarm, and changing the magnitude and circumstances of the time 

observed quantity results in vastly different FAR values. In hopes of decreasing the 

apparent FAR, some PIDS distributors recategorize false alarm to only include instances 

where a system malfunction caused the false alarm and ignore cases where a known 

entity other than an intruder, like wildlife, caused the alarm. A FAR definition 

considering only internal system errors as sources for alarms is more appropriately called 

an unattributed alarm rate (UAR) since all attributed alarm sources are discounted [34]. 

This paper will use the traditional FAR definition given by Equation 19, an approach 

recognizing an alarm caused by anything other than an intruder to be a burden to the 

PIDS operator whether the source can be determined or not. 

 Reaching an overall conclusion about how one PIDS compares to another is 

difficult, even when several system metrics of interest are known exactly. Leach [34] has 

suggested a few comparative measures integrating Pd and FAR to form a single term, but 

notes a combining type of approach is only as useful as the formulation weighting. For 

example, the relative importance between Pd and FAR is dependent on the application, 

and there is ambiguity whether a logarithmic or linear scale should be used. Equation 21 

gives two examples of comparative measures. 
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Equation 21: Examples of Overall PIDS Comparative Measures [34] 

 

 Leach [34] suggests the best method for determining the value of a system is to 

perform an investment analysis by calculating the net fiscal effect caused by the system 

characteristics, where factors like poor reliability, false alarms, installation cost, and 

operating cost are summed and subtracted by the amount of money saved by intruder 

prevention. The cost approach suffers from the formidable hurdle of supplying accurate 

quantitative data, especially in cases where the goal of intruder detection is to avoid 

symbolic damage rather than monetary loss, as might be the case with breaching a 

military base perimeter. Additionally, estimating initial and lifetime costs on a 

developing technology with no commercial equivalent is an impossible task. Evaluation 

of an overall system performance measure will thus have to be a work in progress since 

no good example already exists [34]. A few other PIDS evaluation characteristics are 

occasionally used including reliability, ease of operation, ease of training future staff, 

ease of expansion, vulnerability to defeat, and cost [34-36]. Those criteria are ignored in 

this study because they represent characteristics of a manufactured system with known 

operator interfaces, and this study aims to compare technologies rather than specific 

systems. 

 Unfortunately, typical performance metrics for various PIDS technologies are not 

available, probably because performance is so dependent on the specific application of 

any system. A 20-sensor seismic PIDS, for example, monitoring an oil refinery perimeter 
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in a flat, isolated, vegetation-free environment would perform differently than the same 

system installed on the vegetated, hilly perimeter of a nuclear power plant in a population 

dense area. Geographic differences, let alone variation in the number and quality of 

sensors installed in any given system, make direct performance comparisons imprudent. 

Despite dedicated efforts to establish an experimental perimeter designed to test 

commercial PIDS, most notably in the United Kingdom by the Home Office Scientific 

Development Branch, the effort remains in its infancy [37-39]. Hennin and Germana [40] 

specified several “common” and “typical” values of interest to a PIDS designer as part of 

an overview for an integrated perimeter security system, though the bases for those 

values are unknown. Table 3 shows some of the performance requirements. 

Table 3: Common PIDS Performance Requirements, taken from Hennin, Germana, 
and Garcia [40] 

Source 
Minimum Cross 
Sectional Area 

Minimum 
Speed 

Maximum 
Speed 

Operational 
Availability 

Probability of 
Detection, Pd 

False Alarm 
Rate, FAR 

Hennin, 
Germana, 

and 
Garcia 

0.5m2 0.1m/s 30m/s 99.9% 0.95 
Facility 

Dependent 

 

 Meaningful evaluation of a PIDS depends on prior knowledge of what types of 

threats the system should face. Past evaluation of other PIDS has helped to lay the 

groundwork for formulating what a battery of defeat attempt tests might consist of, 

though no standard exists. Of five defeat tests performed in the evaluation of a 

combination of passive infrared and microwave sensors at an Australian university, only 

the slow movement and crawling test is applicable to testing a GGI-based PIDS. Other 
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tests, like moving behind a shield made of cardboard, aid GGI performance since 

increasing intruder mass increases the magnitude of the gravity gradient tensor at a given 

radius. Likewise, most attempts to provoke a false alarm in the same study—cycling a 

heat source, shining a white light at the sensors, and rigging an aluminum foil covered 

fan to spin in the test area—would not prove useful, though tests like small animal 

movement and random small object motion are applicable [33]. Although gravity 

gradiometry shares some common ground with other PIDS technologies, its uniqueness 

as a perimeter security technology warrants a specialized set of effectiveness tests to 

characterize its performance against different defeat attempts within a noisy environment.
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III. Methodology 
 

  Since this investigation sought to examine the feasibility of using future 

technology to achieve an objective, all conclusions are the result of computer simulation 

rather than experimentation. Initial efforts resulted in a computer program capable of 

calculating the gravitational disturbance gradient caused by a human relative to a 

stationary GGI. A brief investigation into the nature of a human induced gravity 

disturbance gradient yielded an approach for an algorithm to detect intruders. 

Added options allowing the user to test system performance for various off-baseline 

conditions provided confidence an array of GGIs could detect and track a human in a 

realistic security situation. Devising metrics to identify the strengths and weaknesses of 

the algorithm rounds out the discussion in this chapter. 

 

Simulation Overview 

 All simulations were performed using MATLAB R2010b (7.11.0.584) on a 

personal computer system running Microsoft Windows XP Professional with a Xeon 

X5482 processor and 3.25 gigabytes of random access memory. The general steps of the 

computer program are outlined next, with in depth explanation of each step following the 

general steps. The term ‘computer program’ refers to the complete MATLAB program 

that generates gravity gradient signals, runs the detection and tracking algorithm, and 

calculates performance metrics, while ‘algorithm’ refers to just the portion of the 

program that detects and tracks an intruder given gravity gradients from a GGI. 
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 Figure 14 shows a flowchart of the computer program. The majority of the 

program involves setting up a grid of the detection area, placing the GGI array, and 

calculating gravity gradients at the grid locations. The computer program generates the 

gravity disturbance gradients used by the detection and tracking algorithm. 

 

 

Figure 14: Computer Program Sequence 

User specifies 
scenario variables 
and starts program

Based on user settings, grid 
of detection area created and 

GGI array placed on grid

Determine initial intruder position 

Continue loop 
until end of 
path reached

Baseline gravity gradients (expected 
intruder) calculated at every grid 

position and stored

Simulated gradient 
reading passed to 

algorithm

True gravity 
gradient at 

intruder 
location called 
from baseline 

True gravity gradients (based on the type 
of intruder the user specified) calculated 

at every grid location and stored 

True intruder position 
advanced one time step

Noise added to true gradient to 
make it a simulated gradient 

Detection 
and tracking 

algorithm
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 An installed GGI-based PIDS would use only the detection and tracking 

algorithm, since a real intruder would generate the gravity disturbance gradient a real 

array of GGIs would detect. Before running the simulation, the user must specify values 

for the controllable variables. These variables include aspects like GGI array geometry, 

intruder size and movement speed, and algorithm characteristics. The next section 

explains all variable options more thoroughly. When started, the program uses the user 

inputs to populate the array of GGIs on a grid of the area the PIDS is supposed to protect. 

 In general, the algorithm works by comparing the noisy gravity disturbance 

gradient reading with a map of truth, or baseline, gradient readings in the area near the 

security system. The algorithm detects and locates an intruder when all five tensors of the 

gradient reading closely match a location on the baseline gradient map. For this reason, 

the computer program has to generate two gravity gradient maps over the area of interest 

before simulating an intrusion. The true gradient map calculates the gradient caused by an 

intruder with user specified characteristics at every position in the area of interest. The 

baseline gradient map does the same thing, except gradients are calculated for an intruder 

with expected characteristics—the baseline map for a real GGI-based PIDS would be 

created during system calibration. If the expected intruder is a human but the true intruder 

is a large vehicle, the gradient maps will not be similar. Each GGI in the array gets its 

own true and baseline gradient maps, since the gravity disturbance gradient differs 

depending on GGI location. 

 With the true and baseline gradient maps created, the computer program 

determines the intruder starting position. The program then calls the five-component 
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gradient value for the intruder position from the true gradient map, and adds noise to 

simulate a real GGI reading for each of the GGIs in the array. Those readings are passed 

to the algorithm, which compares the reading to the expected intruder gradient map to 

decide whether to sound the intrusion alarm. Each time step advances the intruder 

position along a user-specified path, which generates a new simulated GGI reading. The 

program loops for a set number of iterations, and then ends by calculating algorithm 

performance metrics.   

 The following sub sections cover all aspects of the computer program in depth: 

available user inputs, the methodology for creating off-baseline conditions, GGI noise 

characteristics, the detection and tracking algorithm, and evaluation metrics. 

 

     User Inputs 

 Before starting the program, the user must set the intrusion situation by specifying 

a variety of program variables. The first choice is the scenario type. The initial aim of this 

project was to determine the feasibility of using gravity gradiometry as the primary 

technology in a perimeter security system, but perimeters come in many forms. A user 

begins by choosing between one of two types of scenarios. Intended to characterize how 

well the algorithm could detect an intruder when using a single cluster of GGIs, the open 

area scenario models intrusion detection for any small area in open space, like the 

footprint of an oil derrick, cell phone tower, or wind turbine. The second security 

scenario simulates large perimeter security with clusters of GGIs spaced at equal intervals 

along a line. The user must specify the number of GGIs in each cluster, as well as the 
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cluster geometry by specifying height off the ground, and GGI separation distance within 

the cluster. Figure 15 shows a bird’s eye diagram of an example perimeter scenario with 

four GGIs in each cluster and dashed black lines showing a 20m range from each cluster 

center.  

 

Figure 15: Bird’s Eye View of Perimeter Scenario GGI Layout 

 

While the figure only shows four clusters because of a magnified view, the perimeter 

actually extends further in both directions and there are more equally spaced GGI clusters 

along the perimeter. The same view of the open area scenario looks similar, but there is 

only a single GGI cluster in the area of interest instead of a line of GGI clusters. Figure 

15 shows dashed black lines marking a radius of 20m from each cluster center. The 

‘Perimeter Spacing’ measurement represents the distance between cluster centers along a 

perimeter. 

 The grid size, or area the PIDS is supposed to protect, depends on the scenario 

type. The open area scenario utilizes a 100m × 100m area with the GGI cluster in the 
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middle centered at position (50m, 50m), while the perimeter scenario grid has a variable 

length depending on the GGI perimeter spacing selected by the user and a grid depth of 

100m. Grid length for the perimeter scenario can never be more than 200m, however, 

since GGIs placed further away contribute negligibly to intruder detection since the 

gravity disturbance gradient for an intruder in the area of interest would be too small at 

those large separation distances. In both scenarios, grid resolution is 1m, and the origin is 

always at the point on the grid furthest South and West according to the NED reference 

frame. The discussion on GGI noise later in the chapter will demonstrate the grid size 

choice is reasonable. 

 There can be 1, 2, 4, or 6 GGIs in a cluster. The shape of each cluster of GGIs is 

hard coded into the computer program, but the dimensions of the shape are a user input. 

Figure 16 shows a single cluster with 6 GGIs. ‘Cluster Spacing’ indicates how far from 

the center of a cluster each GGI is, and ‘Cluster Height’ indicates how far above ground 

the cluster center is—note distance above the ground is negative in the NED reference 

frame since the origin is at a height of zero and the positive direction is down. Therefore, 

in the figure the cluster center is at a position of (50, 50, -10), or 10m above the ground. 

A single GGI is positioned in the center of the cluster center; a 2-GGI cluster is arranged 

with each GGI spaced equal distance from the cluster center along the East axis on the 

horizontal plane; a 4-GGI cluster has GGIs spaced equal distance from the cluster center 

along the East and North axis on the horizontal planes; and a 6-GGI cluster is arranged 

like a six pointed tack so there is GGI variation on every plane, but all are equal distance 

from the cluster center. 
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Figure 16: Description of Cluster Geometry 

 

 When setting up a scenario, a user can specify an intruder path by choosing the 

mean speed while choosing between two types of paths. Speed choices are slow, medium, 

or fast, and respectively designed to represent the speed of a human crawl, moderate 

walk, and fast jog. Table 4 shows the values used by the computer program based on 

speed choice.  

Table 4: Intruder Movement Speed Values 

Speed Choice 
Representative Human 

Movement 
Speed (m/s) Speed (mph) 

Slow Crawl 0.3 0.7 

Medium Moderate Walk 1.5 3.4 

Fast Fast Jog 5.0 11.2 

  

 The user must choose between a linear or snaking path. The procedure for 

determining the intruder starting position is different for each scenario type, but common 

to the path type. When a user selects the perimeter scenario, either path type will move 

the intruder along a path roughly perpendicular to the perimeter. The initial North-axis 
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position is 45m south of the perimeter line, while the initial East-axis position is random 

within a defined range of allowable starting positions. The range of allowable East-axis 

starting locations is marked in green on Figure 17. The allowable starting region is 

centered at the middle of all modeled GGI clusters, and spans one perimeter spacing 

length. Therefore, for the example snaking path on the perimeter scenario shown in 

Figure 17, the allowable starting range extends 30m along the East-axis (since the cluster 

spacing is 30m), and is centered on the East-axis at 90m (since East = 90m is the center of 

the six GGI clusters). 

 

 

Figure 17: Example Snaking Path on Perimeter Scenario 

 

Because the perimeter runs perpendicular to the East-axis 50m north of the East-axis, the 

North-axis intruder starting position is at 5m (since it is 45m south of the perimeter line). 

The starting position is random within the allowable starting region to ensure the intruder 

0 20 40 60 80 100 120 140 160 180

10

20

30

40

50

60

70

80

90

100

East Axis (m)

N
or

th
 A

xi
s 

(m
)

Intruder 
Path

Center of all GGI 
clusters

½ Cluster Spacing

Allowable starting position

Starting 
Position

Ending 
Position



 

51 
 

path can fall everywhere within the range of one cluster spacing increment on successive 

runs. Since the allowable starting range encompasses the complete distance between any 

two GGI clusters, the algorithm’s measured detection and tracking performance is the 

same as it would be for any position along an infinite perimeter. 

 For the open area scenario, starting position is determined by randomly selecting 

a start angle around the single GGI cluster. The starting position is a 45m distance from 

the GGI cluster center in the direction of the starting angle. The direction of intruder 

movement is directly at and through the cluster center.  Figure 18 shows an example of 

the linear path on an open area scenario.  

 

Figure 18: Example Linear Path on Open Area Scenario 
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increment according to the speed and time step. The snaking path is a series of 5m radius 

half circles centered on a line in the path direction. Figure 17 and Figure 18 show 

examples of both path types, with each position advance indicated by a small blue filled 

circle. Both paths end as soon as the intruder is as far from the perimeter (in the case of 

the perimeter scenario) or GGI cluster (in the case of the open area scenario) as when the 

simulation started. 

 Since the closed form gravity gradient equations presented in the last chapter are 

only valid for a prism aligned with the axis system, determining the gravity disturbance 

gradient for a human or any other non-prism object requires approximating the object’s 

shape as a prism. The overall goal is to create an approximating prism with a constant 

density but same total mass as the true object, a simple task given the dimensions of the 

prism.  

 The user can test algorithm performance on off-baseline conditions using three 

sizes of humans, as well as two objects other than humans. Table 5 shows all intruder 

choices. For humans, height is the standing height of a human, width is the shoulder 

breath of a standing human, depth is the linear distance from the small of the back to the 

front of the waist, and mass is human mass. All human values in Table 5 are from a 

compilation of human anthropometric data, where values for a ‘small’ human are the 

reported values for a 5th percentile male, values for a ‘medium human’ are those for a 

50th percentile male, and values for a ‘large’ human are those for a 95th percentile male. 

While each dimension for a given human percentile does not necessarily correspond to 

the same person, taken together they provide a good way for approximating the size of a 
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small, medium, and large human approximating prism in this application. Dimensional 

values for the rabbit and large vehicle are the author’s representative approximations and 

not reported from any literature source.  

Table 5: Dimensions and Mass of Various Objects, based on Woodson, Tillman, and 
Tillman [41] 

Object 
Height Width Depth Mass / Weight 

(ft) (m) (ft) (m) (ft) (m) (lb) (kg) 

Small Human 5.3 1.62 1.4 0.42 0.6 0.18 124 56.2 

Medium Human 5.7 1.73 1.5 0.45 0.8 0.25 168 76.2 

Large Human 6.1 1.85 1.6 0.50 1.0 0.31 224 101.6 

Rabbit 0.4 0.13 0.5 0.15 0.8 0.25 5 2.3 

Large Vehicle 6.2 1.90 6.6 2.00 18.0 5.50 8000 3629.0

 

 The user can select the motion position of the human by choosing between an 

upright or prone position. If the prone position is chosen, the program swaps the height, 

width, and depth values to lay the prism on its face. Changing the motion position is not 

an option for the rabbit or large vehicle. With the prism approximations in place, the 

program uses the closed form equations for calculating the gravity gradient to generate 

the true gradient map for the entire grid area. 

 Significant water mass in the form of precipitation falls onto the ground during 

any extended period of rainfall and contributes to a gravity gradient reading. The final 

user input allows the user to include the mass distribution effects of rain into the true 

gravity disturbance gradient calculation. The contribution of rainfall to the gravity 

gradient reading can be estimated by considering rainfall is absorbed some depth into the 

ground over a given time and rainfall rate. If those values are known, the density 
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contribution to the ground can be calculated by dividing the total mass of the rain by the 

volume of the soil it will be absorbed into, as shown in Equation 22 where ρ+,soil is the 

soil density contribution due to rain,  is the rainfall accumulation rate, ρH2O is the 

density of water, and dp is the rain penetration depth.  

,
   
   

 

Equation 22: Soil Density Contribution Due to Rain 

 

Using the same definition for ‘light’ and ‘heavy’ rainfall the American Meteorology 

Center uses along with Equation 22, Table 6 shows the density contribution over one 

hour of rainfall and 0.5m rain penetration into the soil [42]. 

 

Table 6: Overview of Rainfall Characteristics 

Precipitation Type 
Intensity of Rainfall 

(cm/hr) 
Density Contribution 

(kg/m3) 

Light Rain 0.25 5.0 

Heavy Rain 0.76 15.2 

 

Gravity gradient contribution from rain is then calculated by creating a prism with 

density ρ+,soil and a depth dimension of 0.5m. The other two dimensions must be large 

enough to approximate a surface. Since there is no computation penalty for calculating 

the gravity disturbance gradient of a very large prism, the side dimensions of the prism 

are 2000m each because it extends 1000m in each surface direction. Figure 19 shows how 

the rain prism relates to the grid and GGI clusters. The contribution due to rain is only an 

approximation and assumes the same amount of rain falls in every location on the grid, 
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the rain only soaks to a depth dp, and the rain soaks into the ground in such a way so the 

water is evenly distributed in the prism.  

 

 

Figure 19: Diagram of Rain Prism (not to scale) 

 

     GGI Noise 

 Realistically simulating the reading of a GGI requires adding noise to the true 

gravity disturbance gradient. According to Rogers [25], gravity gradiometer 

manufacturers promote their instruments as having zero-mean Gaussian white noise over 

some bandwidth. The noise spectral density (NSD) parameter describes GGI noise, and it 

represents the power of GGI noise over a range of frequencies. Given a NSD and 

sampling frequency fs, the root mean squared (RMS) noise can be calculated using 

Equation 23. 

  ·
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Equation 23: GGI RMS Noise Calculation 
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Since the noise is known to have a mean of zero, the RMS noise is equal to the noise 

standard deviation [25]. In his discussion of GGI noise, DeGregoria [27] notes the noisy 

signals produced by GGIs are often filtered using a low pass Butterworth filter to reduce 

noise. While any technique used to reduce noise is looked favorably upon for this 

investigation, a Butterworth filter is recursive because it uses previous data readings to 

filter the most current reading. A GGI signal is very small when a human is far away and 

relatively large when the human is close to the GGI, filtering causes too much signal lag 

and prevents accurate detection and tracking when the intruder is moving quickly. At the 

expense of a noisier signal, this investigation will forgo low pass filtering. After 

calculating an RMS value, MATLAB’s “normrnd” function introduces noise into the 

calculated gravity disturbance gradient. Table 7 shows the expected RMS noise for 

several NSD values with a sampling frequency of 1Hz. Recall a source in the previous 

chapter suggested a NSD of 0.001Eö/Hz1/2 would be likely in the future. Modern high 

performance GGIs perform internal filtering before outputting a signal, so a 1Hz is about 

the maximum signal production rate (sampling frequency). 

Table 7: Future Unfiltered GGI Noise Characteristics 

GGI Type NSD (Eö/Hz1/2) 
Sampling Frequency 

(Hz) 
RMS Noise (Eö) 

Near Future 0.01 1 0.00707 

Projected Future 0.001 1 0.00071 

Long Term Future 0.0005 1 0.00035 

 

 In combination with the RMS noise in Table 7, the single tensor derivative of 

Newton’s Law of Universal Gravitation provides insight into the effective range of a 
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GGI-based PIDS, and can help to determine what grid size is needed. DeGregoria’s [27] 

reported derivative approximation for the magnitude of a gravity gradient is given in 

Equation 24 where the notation is the same as it was for Newton’s Law of Universal 

Gravitation. 

|Γ|
2

 

Equation 24: Gravity Gradient Approximation 

 

That equation and the RMS noise calculations for the three GGIs shown in Table 7 yields 

Figure 20. It shows the distance from a GGI in which a large human intruder (mass = 

101kg) has a GGI signal to noise standard deviation ratio of unity. The least noisy GGI, 

with a NSD of 0.0005Eö/Hz1/2 and noise RMS of 0.00035Eö, has a signal to noise 

standard deviation ratio of one at about 34m.  

 

Figure 20: Estimated Maximum Effective Range for GGI Based PIDS 
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The graph itself is an optimistic prediction, since only about 68% of a normal distribution 

falls within one standard deviation of the mean. Therefore, the noise levels can be more 

than twice as high as the graph shows, further cutting anticipated effective range. Figure 

20 confirms the grid size used for each intrusion scenario is appropriate, since the 

minimum distance from GGI to grid edge for any intrusion scenario is 50m—well outside 

the expected detection range for the noise characteristics evaluated.  

 Choosing to model the effect of rainfall soaking into the ground on a GGI reading 

is a user option, but there is no model consideration for the raindrops themselves as they 

fall through the atmosphere. Rainfall contributes little to the mean atmospheric density, 

but ignoring the gradiometry effect of falling raindrops requires validation due to the 

extreme sensitivity of the GGIs used for this project. Rain’s density contribution to 

atmospheric air is similar to rainfall’s density contribution to soil discussed earlier. 

Equation 25 calculates the mean atmospheric density increase caused by rainfall where t 

is time, A is some surface area, Vr is the raindrop falling velocity, ρH2O is water density, 

and  is the rainfall accumulation rate. 

,
   
   

 

Equation 25: Atmospheric Density Contribution Due to Rain 

 

The atmospheric density contribution equation reduces to include only the rainfall 

accumulation rate, water density, and raindrop falling velocity terms. Greater 

accumulation rates result in higher atmospheric density while faster drop falling 

velocities lower the atmospheric density contribution. Beard [43] shows rainfall terminal 
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velocity depends on a variety of factors, but ranges from 9m/s to 13m/s for drops with an 

equivalent spherical diameter larger than 3mm. Approximating an atmospheric prism is 

more complex than it was for approximating a soil prism since a GGI is above ground 

and within the atmosphere, while prism gradient equations are only valid for a reading 

location outside of the measured prism. Deployed GGIs are likely to be under a small 

cover, blocking rainfall and in effect carving a small area out of a larger, uniform-density 

rainfall prism. Figure 21 shows the rainfall prism with a small area kept dry by a cover 

over the GGI. Like the soil density contribution prism, the raindrop prism extends 1000m 

away from the GGI in every direction to simulate the gradient contribution from a whole 

atmosphere of rain. The GGI is inside of a small prism marked with dashed lines, 

representing the dry area. The size of the dry area was varied to determine if an installed 

GGI needs a minimum shelter roof size to increase distance between the falling drops and 

the GGI. 

 Figure 22 shows the calculated value of the strongest gravity gradient tensor (Txx) 

for the raindrop prism shown in Figure 21. The plot shows the gradient value for multiple 

shelter radius values, along with notable rainfall rates and the noise standard deviation for 

a GGI with a NSD of 0.001Eö/Hz1/2. Txx has the largest magnitude of all tensors except for Tyy; 

Txx is the same of Tyy, while the other three tensors are many orders of magnitude smaller. 



 

60 
 

 

Figure 21: Diagram of Raindrop Prism (not to scale) 

 

 The plot shows the induced gravity gradient of a heavy (0.76cm/hr) rainfall is not 

significant relative to GGI noise, even with a small shelter roof dimension of 0.2m × 

0.2m. Rainfall rate does not contribute significantly to the gravity gradient reading until it 

reaches about 0.03m/hr, or just over an inch an hour. That level of rainfall is indicative of 

rare, extreme weather, so ignoring the effect of rainfall in the atmosphere is a reasonable 

assumption. Figure 22 shows an installed GGI should be sheltered in a structure with as 

large a roof as possible to create maximum separation distance between falling rain and 

the GGI. All rainfall approximations assume raindrops fall at the same rate in the area 

surrounding the GGI, fall straight down, and together have a uniform mean density in the 

atmosphere. 
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Figure 22: Effect of Rainfall on Txx Gravity Gradient Tensor 

 

 In summary, the computer program utilizes user inputs to create an intrusion 

situation. The program generates the noisy, five-tensor gravity disturbance gradient the 

detection and tracking algorithm uses to detect and locate an intruder. While available 

user inputs do not cover every conceivable intrusion scenario, inputs do test algorithm 

effectiveness against varied intruder size and approach type, multiple GGI array 

geometries, and natural noise sources like rain. The rest of this chapter covers the 

detection and tracking algorithm, algorithm performance metrics, and the simulation test 

plan. 

 

     Detection and Tracking Algorithm 

 This section describes how the detection and tracking algorithm uses the noisy, 

five-component gravity disturbance gradient tensor to detect and localize and intruder. 
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The computer program flowchart showed the only information passed to the algorithm is 

the gravity disturbance gradient. Previous analysis of the gravity disturbance gradient 

equations for a prism indicated a gravity disturbance gradient reading is the result of three 

source object characteristics: size, density, and position. It might seem five independent 

gradient tensors could provide enough information to close a problem with only three 

unknowns. However, each tensor contains so little information that the five independent 

tensors together are only capable of determining one of the three source object 

characteristics given the other two characteristics. 

 An example gravity disturbance gradient for a human can help to illustrate the 

problem. Figure 23 shows contour plots of each of the five no-noise, independent gravity 

disturbance gradient tensors for a medium human, as determined by a single GGI 3m 

above the ground and positioned on the surface grid at (50m, 50m). The plots show the 

baseline gravity gradient map for each tensor, with the contour values representing the 

gravity disturbance gradient caused by a medium human relative to the GGI at position 

(50m, 50m). Once again, the black ‘+’ symbol represents the GGI location, while positive 

gravity gradients have green contours and negative gradients have red contours. As 

expected, the gravity gradient for each tensor gets larger as the intruder gets closer to the 

GGI. The contour distribution for each of the plotted tensors shows why determining the 

precise location of a human requires more than one tensor.  
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Figure 23: Five Component Gravity Gradient Contour for a Medium Human  
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 For example, a Txx reading of 0.0001Eö means the individual could be anywhere 

along the 0.0001Eö contour in the figure. A single gradient tensor reading is not good 

enough to determine direction or radius from the GGI. Observing both the magnitude of 

the contours for each tensor component and distance from the GGI suggests the Txz and 

Tyz tensors are weak compared to the other three tensors.  

 Based on Figure 23, Table 8 shows the maximum distance from the GGI where a 

medium sized intruder would first cause a tensor gravity gradient of 0.001Eö is largest 

for the Txx, Tyy, and Txy components. Practically, this means those components will be the 

first to detect an intruder for any level of noise. 

 

Figure 24: Determining Intruder Position Using Txx and Tyy Components 
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overlap. Figure 25 shows how considering four components makes deducing the true 

intruder position possible, because there is only one position on the grid where all the 

stored gravity disturbance gradient readings correspond to the actual GGI readings. While 

contours for only four components appear in Figure 25 for clarity, the contour of the non-

plotted Tyz component also passes through the true intruder position. 

 

Table 8: Maximum Radius for Medium Sized Human and Gravity Gradient of 
0.001Eö 

Tensor 
Approximate 
Distance (m) 

Relative Strength 

Txx 22 Strong 

Tyy 22 Strong 

Txy 20 Strong 

Txz 13 Weak 

Tyz 13 Weak 

 
 A small random shift in all the contours plotted in Figure 25 helps to illustrate the 

negative effect the addition of noise has on determining an intruder position. After such a 

shift—which represents noise, or a small difference between the true gradient and the 

detected gradient—the tensor contours might not all overlap at a single point, or there 

might be multiple points where several components overlap suggesting more than one 

intruder position. Nygren [44] suggests a method for determining the likelihood of 

position on a grid given a set of noisy measurements if the measurement error is 

Gaussian. Equation 26 determines the most likely intruder position if each gravity 

gradient component is viewed as a unique measurement. 
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Figure 25: Determining Intruder Location Using Overlaid Txx, Tyy, Txy, and Txz 
Component Contours 
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the likelihood function is a matrix of relative likelihood values for the entire grid. The 

portion of the function before the exponential term does not vary with grid position, so it 

acts like a bias. Dropping it from the calculation reduces computing power required 

without changing the results since the function determines relative likelihood of a grid 

positions. Figure 26 shows implementation of the likelihood function (Equation 26) for a 

no-noise GGI and intruder position at (30m, 40m), the same situation presented in the 

previous two contour plots for both the two-component and four-component readings. 

Unlike a contour plot, the likelihood function calculates relative likelihood at every grid 

location. The likelihood maps show the most likely intruder locations are in the same spot 

on the grid where contour plot lines cross. There are large grid areas where position 

likelihood is almost as likely as the maximum when using only the two strongest 

components to generate the likelihood map. This observation suggests accurate position 

estimation requires all independent gradient tensors while demonstrating the low amount 

of information contained in each tensor by itself.   

 

Figure 26: Example Intruder Location Determination Using Likelihood Function 
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 Element-by-element multiplication rapidly combines likelihood maps generated 

for each GGI reading to form a single likelihood map for a grid with an array of GGIs. A 

user input averages each tensor of a GGI reading within a cluster before applying the 

likelihood function. Reading averaging is expected to reduce the number of incorrect 

position guesses since the mean of multiple noisy values should have an error more 

consistently closer to zero than any measurement on its own. The option to either use 

each GGI reading on its own or average the reading is called ‘logic type.’ 

 The algorithm also considers the movement capability of a human intruder when 

calculating position likelihood. If a human is detected at some position on the grid, it is 

unlikely the human could be in a position 50m away from the previous estimate in the 

next one-second cycle since a 50m/s position change is well outside the human range of 

mobility. Increasing likelihood in the areas where a human could move in one time step 

and reducing likelihood of position in the areas where movement is improbable aids the 

tracking ability of the algorithm. A multivariate normal distribution centered on the 

previous GGI reading cycle’s most likely position estimate is a simple method of 

modifying the raw likelihood map. The distribution assigns a movement likelihood value 

to each grid position based on an expected movement speed to create a three dimensional 

likelihood curve. With no information known about the path, the multivariate normal 

distribution places the most likely position of current reading at the same location as the 

previous reading, and the likelihood decreases radially from that spot. For example, 

Figure 27 shows the likelihood curve for intruder position location given a previous 

position of (30m, 30m), movement speed standard deviation of 10m/s in the North and 
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East axes, and a time step of one second. The highest movement likelihood is in the area 

surrounding the previous position estimate, and the lowest likelihoods are at the grid 

positions furthest from the previous position estimate. 

 

Figure 27: Movement Likelihood Radius Given a Previous Location at (30m, 30m) 
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positive effect until an initial intruder position is determined. If no intruder is detected the 

previous time step, the movement likelihood map is set to unity at all grid positions.  

 The earlier contour plots of a human gravity gradient demonstrated an object will 

always have a gravity disturbance gradient value, but the value approaches zero as the 

separation distance between the object and a GGI increases. At some separation distance, 

the magnitude of the gradient reading becomes much smaller than the GGI noise level 

resulting in grid likelihood values more reflective of the random nature of instrument 

noise rather than an actual disturbance gradient. The algorithm avoids the problem by 

accepting a position estimate only when the estimate is close enough to the GGI so the 

gradient magnitude at the estimated position is at least as large as the two-standard-

deviation GGI noise magnitude at the intruder position.  

 Figure 28 shows the area on a grid where at least one tensor of the gravity 

disturbance gradient for a medium human is greater than the two-RMS noise level for a 

GGI with a NSD of 0.001 Eö/Hz1/2. A dashed black circle shows a 19m radius from the 

GGI in all directions, and estimates the radius where some of the gradient is larger than a 

two-RMS noise level. The 19m radius is an approximate GGI range within which a 

likelihood maximum could be often trusted to be accurate because the intruder signal is 

large relative to instrument noise. Though the likelihood maximum could occur at any 

position on the grid, the algorithm considers it indicative of an actual intruder when 

within the expected GGI range. A larger expected GGI range could potentially detect an 

intruder at a larger separation distance from the GGI, but such an advantage comes at the 

expense of more false alarms since the noise level is more likely to be closer to gradient 
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magnitude. Expected GGI range is an input left to the operator when setting up a 

scenario.  

 

Figure 28: Area Where |Tii| · (2·RMSNoise)
-1 is Greater Than Unity 
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it is not, the algorithm discards the reading and waits for the next GGI reading. If the 

estimate is within the expected range, the reading is considered a possible intrusion 

detection and triggers creation of a movement probability radius for the possible 

detection location. The next GGI reading calculates a likelihood map using the likelihood 

function and the movement probability radius from the previous step. The algorithm 

repeats the previous steps indefinitely. If three consecutive readings are possible intrusion 

detections, the algorithm sounds a detection alarm and outputs the most likely intruder 

position from the most recent reading.  

 

Figure 29: Detection and Tracking Algorithm Sequence 
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Figure 29 shows a flow chart of the detection and tracking algorithm sequence. The 

algorithm operates continuously and considers every GGI reading. A primary design 

consideration was simplicity so near real-time operation is feasible using a standard 

desktop computer and a gravity gradient collection rate of 1Hz.  

 The literature review in the last chapter demonstrated the most common metrics 

for evaluating existing PIDS is the probability of detection, Pd, and False Alarm Rate, 

FAR. While Pd is an easy value to ascertain from simulation, FAR is less so since it is a 

measure of how well a security system reacts within a real environment and is better 

suited to determination through field testing. Pd does not tell the full story for a PIDS 

designed to both detect and locate an intruder since it does not assess the tracking or 

pinpointing aspects of a system. Creating a new way to measure performance has the 

advantage of more accurately describing a system, but has the downside of preventing 

comparison to existing systems that do not use the new metric. Though constructed at the 

expense of easy comparison with existing systems, the next section explains the 

Detection and Tracking Parameter. 

 

     Detection and Tracking Parameter  

 The new Detecting and Tracking Parameter (DTP) metric evaluates overall 

system performance. It comprises three important aspects of an intruder detection system: 

the range at which an intruder is first detected, the average error of the position 

estimation, and the ability to provide a continuous tracking estimation. Equation 27 

shows the relationship between the three performance values used in DTP calculation.  In 
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the equation, range of first detection (RFD) is the true separation distance between the 

intruder and GGI cluster (or intruder and perimeter) when the intruder alarm was first 

sounded.  The mean position estimate error (MPE) is the average difference between an 

intruder position estimate and the true intruder position, while the continuous tracking 

proportion (CTP) is the number of alarms divided by the number of measurement cycles 

from the first alarm to the last alarm.  

1
2

·  

Equation 27: Detection and Tracking Parameter Calculation 

 

 

Figure 30: DTP for Various RFD and MPE Values, CTP = 1.0 
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represent a better system and result from first detecting an intruder further away, having 

low position error estimates, and providing a position estimate every measurement cycle 

after the alarm first sounds. Simulating multiple trials without changing the scenario 

setup will yield a normal distribution of DTP values about some mean DTP, and is thus 

considered using normal distribution statistics.  

 Figure 31 shows an example of an open area scenario and the resulting parameters 

used in the DTP calculation. The left plot in the figure shows the intruder path, along 

with red dots showing the various position estimates when an alarm was sounded. The 

right plot in the figure shows a timeline of the algorithm and includes the true intruder 

radius, whether the GGI reading was an alarm or not, and the position estimate error for 

each alarm. The initial alarms do not accurately predict the intruder position, but as the 

intruder nears the GGI the position estimate error decreases significantly. The trial shown 

in Figure 31 has a DTP of 6.23. 

 

Figure 31: Example of DTP for an Open Area Trial 
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 Since the true mean DTP for given scenario setup cannot be known without 

taking an infinite number of samples, which in this investigation would mean running an 

intrusion scenario simulation infinite times, the reported DTP is always be expressed 

within some confidence level. Triola [45] explains the confidence interval for a sample 

mean variable can be determined using a simple random sample and student t-test when 

the number of trials n is greater than 30 and the parameter standard deviation is not 

known. Put simply, a confidence interval expresses some level of confidence a true value 

falls within the calculated confidence interval about the sample value. As the number of 

trials approaches infinity, the confidence interval will shrink to zero since the sample 

mean would become the true mean when the number of samples is so large. Triola [45] 

points out a confidence level of 95% is typically used since it provides a good balance 

between precision (reflected in the width of the confidence interval) and reliability 

(expressed by the high confidence level). The true DTP can then be expressed to fall 

within the interval DTPmean - E < DTPtrue < DTPmean +E where the margin of error E is 

given by Equation 28. 

/
√

 

Equation 28: Confidence Interval Estimate Using Student t-test 

 
 
 In the equation, tα/2 is a critical value and a function of the desired confidence 

interval and number of trials, n is the number of trials, and s is the sample standard 

deviation. Increasing the number of trials, or simulations, reduces the margin of error. In 

this investigation, the simulation number will be large enough so the reported DTP has a 
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margin of error of 0.3 or smaller; put another way, enough samples will be taken so the 

true DTP falls within the range DTPreported ± 0.3. 

 The DTP metric does not indicate when a PIDS is too sensitive and prone to 

generating alarms when no intruder is present. While the traditional FAR metric is not 

well suited to this project, the false alarm probability PFA takes its place. Generating the 

false alarm probability requires running the algorithm without modeling an intruder 

gravity disturbance gradient. The program considers an alarm to be false if an alarm is 

sounded when the no-noise gravity gradient is zero. A PFA value near unity is a 

characteristic of an overly sensitive algorithm, since GGI noise alone is enough to trigger 

an alarm without any intruder at all. 

 A third method of analyzing algorithm performance involves calculating the Pd at 

each grid location as a means of determining the range where the algorithm first detects 

an intruder. Calculating the Pd distribution map is a means of visualizing the intruder 

location where the alarm portion of the algorithm is first set into motion, and is useful 

when determining appropriate values for expected GGI range in future GGI-based PIDS 

designs. Pd is calculated by locating an intruder on a grid location and running the first 

portion of the algorithm. If the algorithm determines a possible intrusion detection 

occurs, the trial is considered a detection.  

 To condense a whole grid worth of data into a few comparable values, the mean 

radius to a Pd of 0.50 is calculated by taking the average distance between the GGI 

cluster center (or perimeter) and the grid location where Pd = 0.50 is first obtained on a 

straight line radiating away from the GGI. The mean grid distance required for the 
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detection probability to transition from Pd = 0.10 to Pd = 0.90 is also be determined as a 

means of suggesting how precise the security system is in the configuration tested. Better 

security systems will have a large Pd = 0.50 radius and a small radius difference from Pd 

= 0.10 to Pd = 0.90 since those characteristics suggest little uncertainty about how a 

system will perform given an intruder, and the true effective range is unambiguous. 

Figure 32 shows an example of the detection probability grid generated for a 4-GGI 

cluster in an open area scenario with a medium human intruder and 100 simulations for 

each grid point. In the example, the Pd = 0.50 radius is a little less than 19m and the 

spread from Pd = 0.10 to Pd = 0.90 is about 5m. The radial distance required to go from a 

near zero probability of detection to certainty of detection is thus relatively small, and the 

configuration’s detection ability can be well characterized and repeated. 

 

Figure 32: Pd Map for a 4-GGI Cluster 
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 Like the DTP, confidence in the accuracy of at each grid location is of interest. 

The procedure used to calculate a level of confidence for Pd and PFA is similar as it was 

for DTP, but the calculation changes slightly since those values are proportions rather 

than a population mean like DTP. According to Triola [45], Equation 29 expresses the 

margin of error for some proportion P where zα/2 is the critical z-value for a given two-

tailed level of confidence and n is the number of samples. 

/
· 1

 

Equation 29: Margin of Error for a Proportion 

 

For Equation 29 to be valid, the proportion must be a simple random sample, there must 

be a binomial distribution with a fixed amount of trials, and · 5 and · 1

5. Based on the example detection probability grid shown in Figure 32, it is clear the last 

requirement is difficult to satisfy at all grid points since at a large distance from the GGI 

the Pd is zero and at a close distance the Pd is unity no matter how many simulations are 

run. Since no type of data distribution captures the essence of an unchanging value, there 

is little choice but to assume a binomial distribution for all grid locations. When a certain 

margin of error is desired but the expected proportion is not known before setting the 

number of trials, Trioli [45] suggests setting the · 1  term to 0.25 since it 

represents the largest possible value for the term.  

 The confidence level for PFA is 95%. False alarm metrics are most useful when 

presented with some context of time, since a false PFA = 0.01 means a very different thing 

if it results in one false alarm every 24 hours versus one false alarm every minute. All PFA 
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values reported in this investigation are the result of 1 simulated hour of operation, or 

3600 algorithm cycles at 1Hz. Therefore, a reported PFA value of 0.0014 means the tested 

configuration had five false alarms during the simulation and has a false alarm rate of 

five per hour. Since n = 3600, the PFA margin of error is PFA = PFA, reported ± 0.016.  

 As with DTP and PFA, the Pd maps use a 95% confidence level. Due to the large 

number of grid points, increasing n rapidly increases the required number of 

computations. For this reason n = 100 for all Pd simulations. That value of n yields a 

maximum margin of error of about 0.1 when assuming 0.25 for the · 1  term. 

While a 10% error margin is somewhat large for a simulation where the number of trials 

is controllable, a primary goal of this simulation is to gain some understanding of how the 

detection probability spread changes based on user inputs—an objective is still 

achievable even with a large margin of error. Furthermore, a Pd map is the not a means of 

evaluating the algorithm, and is only used in some instances to help explain the results. 

 In summary, every set of simulations collects DTP and PFA, while Pd map 

generation is reserved for helping to understand unexpected results. With a method in 

place for evaluating the algorithm using the results of computer simulations, the final step 

before collecting data is to determine which user variables to test.  

 

Test Plan 

 With 15 variables, a full factorial analysis requires simulations of several million 

variable combinations and is well outside the range of feasibility for this project. The 

goal of all simulations is to demonstrate the effects of changing user inputs. Table 9 

overviews all user inputs, along with the baseline values for each variable. The baseline 
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values are those that produced good detection and tracking results during computer 

program development, but were not optimized. Part of the test plan includes simple 

sensitivity analysis for each variable using the baseline condition. The overview of user 

inputs shows the available inputs partitioned into three different parts of the system. 

Choosing only a few variable combinations for full factorial analysis limits the number of 

simulations while still focusing on the three distinct parts of the PIDS system outlined in 

Table 9. Table 10 shows the variables used for the GGI cluster geometry, intruder size, 

motion and speed, and GGI noise full factorial analysis. The effect of rain and the type of 

intruder were investigated separately. 

 

Table 9: Overview of User Inputs 

Part of System Variable Options Baseline 

Intruder 
Characteristics 

Intruder Speed Slow, Medium, Fast Walking 

Path Type Linear, Snaking Linear 

Motion Position Upright, Prone Upright 

Human Size Large, Medium, Small Medium 

Type of Intruder Human, Rabbit, Large Vehicle Human 

Precipitation State None, Light Rain, Heavy Rain None 
    

GGI 
Characteristics 

Number of GGIs in Cluster 1, 2, 4, 6 4 

Perimeter Spacing Any Positive Number 30m 

GGI Cluster Spacing Any Positive Number 2m 

GGI Cluster Height Any Positive Number 1m 

GGI Noise Spectral Density Any Positive Number 0.001Eö/Hz1/2 
    

Algorithm 
Expected GGI Range Any Positive Number 18m 

GGI Logic Type Used Equal Weighting, Averaging Equal Weighting 
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Table 10: Areas of Full Factorial Analysis 

Area Variables Values 

GGI Cluster 
Geometry 

Number of GGIs in a Cluster 1, 2, 4, 6 

GGI Cluster Spacing (m) 1, 2 ,4 ,6 

GGI Cluster Height (m) 1, 3, 5 

Intruder Size, 
Motion, and 

Speed 

Intruder Speed Slow, Medium, Fast 

Path Type Linear, Snaking 

Motion Position Upright, Prone 

Intruder Size Large, Medium, Small 

GGI Noise and 
Algorithm 

GGI Noise Spectral Density (Eö/Hz1/2) 0.01, 0.001, 0.0005 

Expected GGI Range (m) 10, 15, 18, 20, 25, 30 

GGI Logic Type Used Equal Weighting, Averaging

 

 
     Summary of Assumptions 

 The usefulness of the results hinge on the handful of assumptions made to 

simplify the simulation. Perhaps most crucial is the idea a gravity gradient for a natural, 

non-intruded grid area can be accurately mapped and does not change significantly 

between GGI reading time steps. Much like taring a scale before use, every gravity 

gradient reading must first subtract the total natural gravity gradient at the GGI location 

before determining the disturbance gradient caused by an intruder. If the value of the 

natural gradient is not steady it would be impossible to know what portion of a gradient 

reading came from the changing background gradient and which portion came from an 

approaching intruder, making accurate detection and tracking impossible. There has been 

little previous work characterizing background gravity gradient shifts over time, but the 
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sorts of events with the potential to cause a noticeable shift are not difficult to imagine. 

Changes in underground aquifer levels, snow, soil erosion, and movement of very large 

objects could all influence the natural total gravity gradient. 

 In a similar vein, it is important to create an accurate disturbance map for the 

expected intruder type. This means the initial installation of a GGI PIDS requires 

significant calibration, and is probably easiest completed by recording the disturbance 

gradient as an individual stands at every grid location. This is not a trivial task, but the 

usefulness of the likelihood function decreases significantly if the baseline gradient map 

is inaccurate. In reality, a baseline gradient map would have some inaccuracies, but for 

this initial technology investigation the baseline gradient disturbance map is assumed 

perfect for the expected intruder type. While it is important the prism model of a human 

offer a good representation of the true gradient for a human, its use in this paper is limited 

as a method for determining approximate gradient magnitudes and spatial patterns. A 

functioning GGI PIDS would use a real human, rather than a prism model, to create the 

baseline disturbance gradient map, and thus the baseline would match the true expected 

intruder disturbance signal.  

 In conclusion, this chapter demonstrated how a MATLAB computer program 

utilizes user inputs to produce a simulated gravity gradient. It discusses how an algorithm 

uses the noisy, five-tensor simulated gradient reading to predict an intruder location with 

a size and density assumption. The methodology discussion ends with a discussion of 

performance metrics and the associated statistical confidence measures needed to 

evaluate simulation results. The next chapter describes the results of the simulations. 
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IV. Analysis and Results 
 

 The simulations tested security system performance in five general areas: GGI 

cluster geometry, GGI noise and algorithm characteristics, human physiology and 

movement, ground absorption of precipitation, and other-than-human intruders. It is 

impossible to analyze and present every nuance in data covering many thousands of 

simulations and multiple variable combinations. What follows is an observation of 

general trends, rules of thumb, and useful information for the future design and of a GGI-

based PIDS. This results discussion most often uses the detection and tracking parameter 

(DTP) as a measure of overall system performance, but other important aspects like false 

alarm probability (PFA) are included when relevant. Keep in mind all DTP values are 

reported at a 95% confidence level to DTP ± 0.3, and PFA is reported at a 95% confidence 

to PFA ± 0.02. 

 Table 11 shows the baseline performance of the modeled system for the open air 

and perimeter intrusion scenarios. There was little overall difference between the two 

scenarios, and the small differences in mean range at first detection (RFD) and mean 

position estimate error (MPE) were likely the result of where the simulation positions the 

intruder. In the open area scenario, the intruder moved directly toward the GGI cluster, so 

the RFD should have been close to the maximum detection range for a GGI cluster. In the 

perimeter scenario though, the RFD was the distance from the intruder to the perimeter—

not from the intruder to a GGI cluster—so the intruder could get closer to the perimeter 

before entering the maximum detection range of one of the GGI clusters on the perimeter. 

In both baseline scenarios the mean continuous tracking proportion (CTP) was unity, 
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meaning the algorithm provided an alarm and position estimate every gradient collection 

cycle from first detection through the time the intruder left detection range. There were 

no false alarms for either scenario during the simulated hour-long false alarm test. 

 

Table 11: Baseline Performance Values 

Scenario 
Type 

  
Mean Range 

at First 
Detection (m) 

  

Mean 
Position 
Estimate 
Error (m) 

 

Mean 
Continuous 

Tracking 
Proportion 

 
Detection and 

Tracking 
Parameter 

  
False Alarm 
Probability 

Open Area   15.90   1.66  1.00  6.26   0.000 

Perimeter   13.87   1.15  1.00  5.76   0.000 

Intruder Speed: Walk, Path Type: Linear, Motion Position: Upright, GGIs Per Cluster: 4, Cluster Height: 1m, Cluster Spacing: 2m, 
NSD: 0.001Eö/Hz1/2, Perimeter Spacing: 30m, Expected GGI Range: 18m, Logic Type: Equal Weighting 

 

GGI Geometry 

 A full factorial analysis considered changes to the number of GGIs in a cluster, 

cluster height, and cluster spacing in an open area scenario while holding all other 

variables at the baseline value. Figure 33 shows a bar plot with calculated DTP for every 

combination of the available user input variables for GGI geometry. The simulations 

tested three cluster heights—1m, 3m, and 5m—and four spacing values—1m, 2m, 4m, 

and 6m—for clusters with one, two, four and six GGIs.  

 For all number of GGIs in a cluster, system performance increased as cluster 

height increased. The result makes intuitive sense based on the nature of the independent 

tensors. The strongest gravity gradient tensors are those in the same plane of movement 

as the source object because the gravitational vector points from the detection location to 
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the source object. The earlier table in the methodology discussion showing relative 

component strengths for this application makes sense with these results in mind—if 

measured near the plane of human movement (the ground), the Txx, Tyy, and Txy tensors 

are the strongest. Since there is little variation in the gravitational vector in the vertical 

direction because an intruder and GGI are bound to ground level, the Txz and Tyz tensors 

are weakest. Raising the GGI off the ground increases the vertical component of the 

gravitational vector for an approaching intruder, which means the Txz and Tyz tensors 

increase magnitude as well. The algorithm detects and locates an intruder best when all 

five tensors have information, e.g. it performs best when all five tensors have a relative 

strength of 0.2, rather than when three tensors each have a relative strength of 0.33 and 

two tensors have a relative strength of zero.  

 

 

Figure 33: Results of Cluster Geometry Full Factorial Analysis 
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 There are two disadvantages to raising a GGI off the ground to balance gravity 

gradient tensor magnitudes. First, it increases the separation distance between an 

approaching intruder and the GGI, reducing the magnitude of all tensors, whether 

balanced or not. Second, it provides a logistical challenge to mount and service a GGI 

many meters off the ground. Figure 33 shows changing the cluster height from 1m to 5m 

increased DTP, but by a maximum of about 1.0. An extra two meters of detection range 

or one meter lower position estimate error is probably not enough reason to raise a GGI 

high off the ground for the disadvantages just discussed. Nonetheless, cluster height does 

affect how a GGI detects an intruder and is an option for future investigation. 

 At first glance, increasing cluster spacing also seems to increase algorithm 

performance by raising DTP. Figure 33 shows DTP increased by about 0.25 for every 

meter of cluster spacing for each clusters with two, four and six GGIs. Since mean range 

of first detection is defined as the distance from the cluster center to the intruder, 

increasing cluster spacing places a GGI nearer to an approaching intruder. The increased 

DTP is a result of positioning individual GGIs further away from the cluster center rather 

than the detection footprint of any single GGI increasing. Still, concluding a larger array 

of GGIs increases the detection characteristics of the PIDS is important to designers, even 

if it is the obvious and expected result. 

 Increasing the number of GGIs in a cluster increased DTP for all geometries 

tested, though the increase was negligible beyond a 4-GGI cluster. The most marked 

improvement occurred between the 1- and 2-GGI clusters. When the cluster was at 

ground level, the DTP nearly doubled with the addition of a single GGI to the cluster. 
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Adding more GGIs increased overall performance by reducing the mean position 

estimate error to about 1m, but the DTP increase was small. Though a 4-GGI cluster was 

the baseline for the rest of the simulations, Figure 34 shows a 2-GGI cluster offered the 

best balance between a low number of instruments and good system performance. 

 

 

Figure 34: Effect of GGIs Per Cluster on Baseline Performance 
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cluster heights resulted in fewer false alarms, but even the 2-GGI clusters had at least one 

false alarm per hour at every cluster spacing value simulated. Large cluster spacing 

values most consistently provoked false alarms, though smaller spacing values were not 

entirely immune. 

 

Figure 35: Effect of Cluster Geometry on False Alarms 
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as well as the 4- or 6-cluster GGI, but had an average of more than one false alarm per 

hour. All geometry configurations were remarkably stable across changes to the other 

variables, differing DTP by less than one unit. Geometric stability has both positive and 

negative aspects. It suggests GGI installation in a future system to be a simple 

undertaking, since there is little performance advantage to place GGIs in a precise, 

specific pattern. A placement tolerance of several meters in any direction promises to 

allow quick GGI deployment and setup by avoiding complex tasks like a physical site 

survey. On the other hand, low performance sensitivity to cluster geometry means GGI 

array geometry cannot be fine-tuned to greatly increase detection and tracking 

performance. The burden to know GGI position accurately, however, is not relaxed by 

the low position precision requirement since intruder position estimates are made relative 

to GGI location.  

 

Human Physiology and Movement 

  Cluster geometry was an important consideration for a GGI-based PIDS because 

it offered insight into some factors important for eventual system optimization. This 

simulation section showed how the algorithm reacted to an intruder slightly different 

from the one used to make the baseline gravity gradient map, and the results detail how 

much tolerance the algorithm had for an off-baseline human intruder.  

 Figure 36 shows DTP for different intruder sizes, path types, and movement 

speed. Movement speeds have the same colored line; a solid line indicates a linear path, 

while a dashed line indicates a snaking path. All combinations are plotted against the 
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three simulated human intruder sizes. DTP for all intruder speeds and path types was 

largest for large intruders, the result of a larger intruder having more mass and creating a 

stronger gravity gradient at a given range than the other intruder sizes.  

 

 

Figure 36: Results of Intruder Size, Motion, and Speed Full Factorial Analysis 
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dimensional differences between the large and small intruder were slight enough to 

conclude human mass—not size—had the greater effect on gravity gradient strength and 

overall algorithm performance. 

 Path type contributed little to DTP variation at crawling and walking speeds, 

though for all human sizes at those movement speeds the snaking path DTP was slightly 

lower than the linear path DTP. Again, Table 17 in Appendix B reveals the approximate 

0.5 unit DTP decrease for path type was due to a larger position estimate error, rather 

than a decrease in first detection range. In theory, centering the movement likelihood 

radius on the last known intruder position eliminated the effect of path choice on 

algorithm performance because the likelihood of movement was the same in every 

direction. Though the effect of path type was small at slow and medium speeds, further 

investigation should study whether more complex path types exacerbate the DTP 

decrease seen for the snaking path. Running speed significantly decreased DTP relative 

to the two slower speeds, but the result makes sense in light of the algorithm’s 

requirement for three consecutive possible intruder detections before sounding an alarm. 

When travelling 5m/s directly at the GGI cluster, the intruder could travel 15m within the 

GGI detection range during three one-second detection cycles before the first alarm. 

Since the snaking path did not move the intruder straight at the GGI cluster, the DTP 

decrease from slower movement speeds was more reasonable. Smaller RFD values for 

the fast movement speed did not indicate algorithm misperformance, but rather reflected 

the smaller amount of gradient information available when the intruder quickly crossed 

through the detection range. 
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 Table 12 shows motion position had almost no effect on the algorithm’s detection 

and tracking ability. The table presents the mean DTP difference between the upright and 

prone position for both movement speed and intruder size. The prone DTP was lower 

than the upright DTP for every variable combination, but the difference was nearly 

always about one DTP confidence interval, or close to statistical insignificance. A 

running intruder had the largest upright-prone DTP difference, but at under 0.6 units the 

mean difference is nearly within the DTP uncertainty range. Additionally, prone human 

movement at 5m/s is unlikely. 

 

Table 12: Effect of Motion Position on DTP for Various Intruder Sizes and Speeds 

    Crawl Walk Run 
Mean DTP 

Difference Between 
Upright and Prone 

Small 
Intruder 

Upright 6.45 5.11 0.68 
0.32 

Prone 6.21 5.05 0.02 

Medium 
Intruder 

Upright 7.72 6.36 2.17 
0.36 

Prone 7.41 6.25 1.50 

Large 
Intruder 

Upright 8.08 6.81 2.60 
0.29 

Prone 7.71 6.71 2.21 

Mean DTP 
Difference Between 
Upright and Prone 

0.31 0.09 0.57   

Scenario Type: Perimeter, Path Type: Linear, GGIs Per Cluster: 4; Cluster Height: 1m, Cluster Spacing: 2m, NSD: 
0.001Eö/Hz1/2, Perimeter Spacing: 30m, Expected GGI Range: 18m, Logic Type: Equal Weighting 

 

 Of all intruder movement and physiology variables, intruder mass and movement 

speed had the greatest effect on the GGI-based PIDS performance. The algorithm 

performed strongly against all tested variations of a human intruder, though fast 

movement speeds decreased the range of first detection to about 5m. Mean position 
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estimation error ranged from 1m to 3m, changing little for any of the full factorial 

combinations. Fundamentally, these results confirm the uniqueness of the technology in a 

security application. The intruder characteristics having little effect on detection and 

tracking ability, like motion position and physical size, are of primary interest to a radar 

or infrared detector. Likewise, the most important characteristic for a GGI—intruder 

mass—has no theoretical effect on the performance of a seismic sensor or video camera. 

 

GGI Noise and Algorithm Settings 

 The previous two full factorial analyses tested GGI geometry and an off-baseline 

human intruder. The final factorial analysis used the remaining algorithm variables to 

characterize the effect of GGI noise, logic type, and the expected GGI range on the 

algorithm. 

 

Figure 37: Results of GGI Noise and Logic Type Full Factorial Analysis 
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 Figure 37 shows the simulated DTP across six expected GGI ranges for the three 

GGI noise values and two algorithm logic types. The same line color is common to the 

noise spectral density (NSD) value, while a solid line represents the equal weighting logic 

type and dashed line represents the averaging logic type. At an expected GGI range of 

10m, all noise levels had about the same DTP. The DTP value was low relative to the 

baseline value of about 6.0 because the small expected GGI range reduced RFD to below 

10m. As expected GGI range increased, DTP for the noisiest simulation decreased to 

below 1.0 and stayed low through an expected GGI range of 20m. The other two noise 

levels tested had nearly the same DTP through an expected GGI range of 18m before the 

more noisy of the two—the 0.001Eö/Hz1/2 GGI—trailed off, eventually maintaining a 

DTP of about 7.0 up to an expected GGI range of 30m. The GGI cluster with a NSD 

value a half magnitude better than the baseline case increased DTP across the entire 

simulated expected GGI range, though the amount of increase slowed at a 30m expected 

range. It had a maximum DTP of about 9.5. As expected, the general trend was for a less 

noisy GGI to have a better detection range and higher DTP. 

 Averaging each gravity gradient tensor within a cluster prior to applying the 

likelihood function was detrimental to the DTP at all expected GGI ranges for the two 

least noisy conditions. In most cases, the RFD was nearly the same as the equal 

weighting logic. However, averaging typically caused an MPE several meters larger than 

it was for equal weighting, which acted to drive DTP down. The noisiest condition had a 

higher DTP using averaging logic, but both were low and had MPE values near 20m.  
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 Since the algorithm works by ignoring the positions of maximum likelihood when 

they fall outside the expected GGI range, every GGI noise level has an optimal expected 

range value. When optimized, the expected GGI range is the largest possible before it 

extends so far that position estimates become unreliable because the disturbance gradient 

signal is not stronger than GGI noise. The detection and tracking parameter alone does 

not contain enough information to determine the best expected GGI range value for a 

given noise level, because the effect of large position estimate errors on DTP is 

outweighed by large first detection ranges. Figure 38 shows how the probability for false 

alarm changed for each NSD-expected GGI range combination.  

 

 

Figure 38: Effect of NSD and Expected GGI Range on PFA 
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 It shows PFA is a better measure than DTP of where the optimal GGI expected 

range is for a given NSD. Since a PFA value as small as 0.001 is equivalent to nearly four 

false alarms per hour, the optimal expected GGI range for a given NSD level is the 

maximum before PFA > 0. The resolution for the simulated data is low since only six 

expected GGI values were tested, but the plot shows optimal expected GGI range is less 

than 10m for NSD = 0.01Eö/Hz1/2, between 20m and 25m for NSD = 0.001Eö/Hz1/2, and 

between 25m and 30m for NSD = 0.0005Eö/Hz1/2. Comparing Figure 37 and Figure 38 

reveals DTP does not begin to decrease until several meters after the optimal expected 

GGI range, so it is not a good metric to pinpoint the most favorable expected GGI range 

value for a given GGI noise level. Since averaging logic did not consistently reduce the 

false alarm probability and provided no better DTP than equal weighting logic, there was 

no apparent advantage to using averaging over equal weighting.  

 Comparing the Pd maps for a given GGI noise level helped to solidify why 

selecting the best expected GGI range is important. Figure 39 shows how increasing the 

expected GGI range resulted in an expansion of the detection area, but when increased 

too large the spread between high and low probability contours became very large. The 

methodology discussion explained a larger spread between the radius of high detection 

probability and low detection probability was undesirable because it indicated 

inconsistent detection ability at certain ranges. Noting the probability spread is very large 

for the for the expected GGI radius of 25m in Figure 39, while the false alarm probability 

for the same NSD and expected detection range is well above zero, further confirms the 

thought. Large spreads drove up the false alarm probability. On the other hand, choosing 
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too small an expected GGI range for given GGI noise level constrained the algorithm so 

the GGI underperformed. The 10m expected GGI range plot in Figure 39 shows the 

underperformance: while the probability spread is very narrow (< 1m), the effective 

detection range was about 10m. Figure 38 shows the best expected GGI range was at least 

20m for a NSD of 0.001Eö/Hz1/2 since there was a zero probability of false alarms up to 

that expected GGI range value. The results show a GGI array was tunable using the 

expected GGI range value. Lower values reduced the probability of false alarms and 

rigorously defined the effective detection footprint, while higher values increased the 

effective GGI cluster range at the expense of a higher probability of false alarms.  

 

Figure 39: Pd Map Comparison for NSD = 0.001Eö/Hz1/2 
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precipitation infiltration into the ground and other than human intruders represent far off-

baseline conditions. 

 

Figure 40: Effect of Precipitation on DTP for Various Intruder Sizes 
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cluster did not increase the position estimate error. Though rain seeping into the ground 

reduced the effective detection range of the system, it was not enough to prevent effective 

algorithm performance. Additionally, Table 19 reports the false alarm probability for all 

rain types was zero, a positive indication of a GGI-based PIDS ability to be useful in 

adverse weather. 

 The simulation only tested rain accumulation over a single hour, so the results say 

nothing about algorithm detection capability at the end of a long, steady rainstorm where 

several hours worth of precipitation soaks into the ground. Figure 40 is still relevant, 

however, because there are a few ways to roughly estimate and account for the effect of 

long periods of precipitation on the gravity disturbance gradient.  

 The simplest method uses a common rain gauge. A gravity disturbance gradient 

could be calculated using specific soil infiltration information for the installation site 

along with the amount of rain in the rain gauge. Subtracting the estimated rain 

disturbance gradient from every gradient reading would yield a gravity gradient reading 

free from the influence of rain infiltration. The true rain disturbance gradient would be 

only an estimate using such an imprecise method, but Figure 40 shows the algorithm had 

some tolerance for unaccounted rainfall. In-ground sensors could further improve the rain 

gauge estimate by calculating the specific amount of rain infiltration at different soil 

depths to increase the accuracy of the rain prism approximation.  

 A complete investigation into rainfall approximation requires detailed soil models 

able to predict accurately how rain moves through the ground, and a method for 

predicting the influence of a complex underground rain density structure on a surface 
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GGI reading. Both tasks are outside the scope of this project, and probably easiest left to 

experimentation on an installed GGI cluster. The rain results show how any amount of 

rainfall decreased the effectiveness of gravity gradiometry as a security system 

technology by decreasing the first detection range. Nevertheless, rudimentary techniques 

likely prevent rendering useless a GGI cluster with a NSD as low as 0.001Eö/Hz1/2 in a 

prolonged rainstorm. 

  

Non-Human Intruders 

 The final area of evaluation was algorithm response to a small animal and large 

vehicle. This test was important because it offered indicators of how well the likelihood 

function technique at the algorithm’s core operated when the baseline gradient map for 

the expected human intruder was very different from the true gradients caused by a non-

human. DTP is a measure of how well the system performed against the expected 

intruder type, not against other types of intruders. Though the DTP value meant little for 

this application, some of the variables contained within were important, like the range at 

first detection and the position estimate error. The proportion of simulations triggering an 

alarm was calculated and reported in Table 20 in the Appendix B along with rest of the 

results for this series of simulations. The proportion of simulations triggering an alarm is 

the likelihood the intruder type caused the algorithm to sound at least one alarm from the 

start to the end of the path. Less massive intruders should have a low proportion of 

sounded alarms since their gravity disturbance gradient is small relative to the baseline 
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values, while intruders larger than the baseline should cause an alarm every simulation 

because their gravity disturbance gradient is larger than the expected value. 

 

Figure 41: Effect of Intruder Type on Detection Characteristics 
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position estimate error was well over 10m in some cases. The large vehicle caused poor 

algorithm performance, with high first detection ranges and equally high position 

estimate errors for all expected GGI ranges evaluated.  

 The results showed large disturbance gradient values for a vehicle the size of a 

pickup truck allowed detection at large ranges, but the human baseline map was too 

dissimilar from the true pickup gravity gradients to predict position accurately. A small 

object the size and mass of a rabbit did not cause an alarm until very close to the GGI 

cluster, but the baseline map for a human was still too dissimilar from the true rabbit 

gravity gradient to result in good tracking capability.  

 Table 13 shows the proportion of simulations that triggered an alarm for each 

intruder type. As expected GGI range increased, the intruder’s ability to trigger an alarm 

increased as well. The large gravity gradients of the vehicle triggered an alarm every 

simulation for all the expected GGI range values tested.  

 

Table 13: Percentage of Simulations that Triggered at Least One Alarm 

Expected GGI 
Range (m) 

Intruder Type 

Rabbit Medium Human Large Vehicle 

10 27 77 100 

15 36 100 100 

18 40 100 100 

20 32 100 100 

25 91 100 100 

30 100 100 100 

Scenario Type: Perimeter, Intruder Speed: Walk, Path Type: Linear, Motion Position: Upright, 
GGIs Per Cluster: 4; Cluster Height: 1m, Cluster Spacing: 2m, NSD: 0.001Eö/Hz1/2, Perimeter 
Spacing: 30m, Logic Type: Equal Weighting, Number of Simulations: 150 
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 Combined with Figure 41, the table suggests a few possible ways to improve 

algorithm performance against off-baseline intruders. Most potential intruders smaller 

than a human—rabbits, gophers, dogs, etc—are not true security threats, meaning an 

ideal algorithm would ignore them without sounding an alarm. The rabbit’s small RFD of 

less than 3m suggests a physical barrier could prevent the gravity gradient for small 

animals from ever becoming large enough to trigger an alarm. When the expected GGI 

range was 10m, the rabbit was detected in only 27% of the simulations, likely evading 

detection when it moved between two clusters on the perimeter. A simple barrier like a 

fence surrounding each GGI cluster with a radius of a few meters would have prevented 

the rabbit from ever entering the cluster detection range for so small an animal. Raising 

the GGI off the ground could provide a similar separation effect.  

  Larger, more massive objects are a more challenging problem. Gravity 

gradiometry is not useful for distinguishing between objects about the same size and 

mass, so an algorithm could probably never distinguish a small deer from a human using 

gravity gradiometry alone. While more mass increases possible detection range, accurate 

position estimates require the baseline gradient map to match the true intruder 

characteristics. In the case of a pickup, the many-fold mass increase allows detection at 

ranges in excess of 40m but without correct position estimation. Simulating other than 

human intruders demonstrated the detection portion of the algorithm was robust against 

varied intruder shapes and sizes, but the tracking ability suffered when the intruder did 

not resemble the intruder used to create the baseline gradient map. Appendix B shows the 

full results of all simulations in Table 14 through Table 20. 
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V. Conclusions and Recommendations 
 

Gravity Gradiometry as a PIDS Technology 

 With no previous published work linking gravity gradiometry to outdoor 

perimeter security, this project was the first step toward merging a longstanding scientific 

concept with an industry need. Though current technology levels cannot yet produce a 

GGI capable of the high sensitivity required to detect a human mass change at ranges of 

tens of meters, new gravity gradient measurement approaches promise future GGIs with 

noise characteristics several orders of magnitude better than they are today. This project 

showed how combining that level of progression with the unique nature of gravity 

gradiometry could allow a cluster containing multiple GGIs to detect and accurately track 

a human intruder at ranges of 20m or more with a position estimation error of less than 

2m, all with a false alarm likelihood of less than one per hour. 

 Initial gravity gradient calculations demonstrated the gradient contribution of 

falling rain was negligible relative to future GGI noise levels, while simple estimation 

techniques allowed successful algorithm performance in spite of large net mass increases 

near a GGI due to ground absorption of precipitation. Spatially manipulating the GGI 

array geometry by up to 5m in every direction had little effect on overall detection 

capability, though placing at least two GGIs near each other significantly decreased 

position estimation error. Varying human intruders from the 5th to 95th size and mass 

percentiles had only a small effect on detection capability. Detection capability was most 

dependent on intruder mass, with the more massive intruders first detected at a greater 

range than smaller intruders. There was almost no difference between detection and 
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tracking performance when the intruder was in a prone position versus a standing 

position, further highlighting the importance of mass over shape as the primary indicator 

of detection range. Faster intruders eluded detection for longer than did slow moving 

intruders, but intruders were eventually detected at all extremes of the human range of 

motion. 

 The created algorithm determined intruder presence and position by applying the 

likelihood function, comparing every noisy gradient reading to a map of true gradient 

readings for the expected intruder type—in this case a medium sized human. The 

algorithm approach resulted in good performance when the intruder was similar to the 

baseline, but position estimation suffered when there was little similarity. Replacing the 

human intruder with a large vehicle caused the algorithm to detect the vehicle mass at a 

range in excess of 40m, but the gravity gradient tensor value combination was too 

dissimilar from the baseline gradient map to result in accurate position estimation. While 

the non-human intruder simulations revealed the algorithm gave poor position estimates 

when the true intruder was much different from the expected intruder, all types of 

intruders were detected. Those characteristics mean a GGI-based PIDS has particularly 

high potential in circumstances where the security system need is limited to detection 

capability alone.  

 If predictions of future sensitivity levels are eventually realized, gravity 

gradiometry appears at least as useful in a security application as existing volumetric 

PIDS technologies. Like radar, infrared, seismic, and optical intruder detection methods, 

effective intruder detection using gravity gradiometry is susceptible to natural sources of 
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noise and decreased performance when the intrusion scenario is different from the design 

point. Unlike the present technologies, gravity gradiometry is not fooled by deliberate 

movement methods, heat-masking techniques, or the dark of night. All PIDS work better 

by combining multiple technologies to overlap the weaknesses of one method with the 

strengths of other. Gravity gradiometry could also gain from such a combination, but this 

early investigation suggests it might be a strong enough technology in the future to stand 

on its own with little performance penalty.  

 

Recommendations for Future Research 

 As this was an initial feasibility study, many aspects of using gravity gradiometry 

for perimeter security require more investigation. The most severe need for deeper 

exploration lies in characterizing natural gravity gradient shifts at the milli-Eötvös level. 

Results from this project are valid only when the background gravity gradient signal at 

some location is constant. Natural processes like plate tectonics and the water cycle 

redistribute large amounts of mass, often without visual indicators. If changes in the 

natural gravity gradient are common at the sensitivity levels of future instruments, a GGI-

based PIDS for human intruder detection would have to take a different approach. 

 The detection and tracking algorithm needs modification to track and detect 

multiple intruders. Successful results for a simple, one-person intrusion scenario 

demonstrated broad concept feasibility, but a perimeter security system requires a 

stronger algorithm able to handle more intruder types and combinations of intruders. 

Using multiple baseline gravity gradient maps and better intruder tracking logic are just a 
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few ways the algorithm might be improved. The algorithm is simple enough to run on a 

basic desktop computer much faster than real time in its current state, so margin exists for 

the computational penalty incurred by added complexity. 

 In the security system realm, a large gap exists in the area of standardized system 

testing. With only a few common performance metrics and no universally accepted 

governing body, there are few ways to consistently compare a new security system 

concept with existing systems. The most reliable and useful method, side-by-side 

comparison, is an expensive option not even available to systems at the conceptual design 

level. The need here is two pronged. First, there should be simple, easily replicated tests 

covering the most common security system applications. Ideally, those tests should lend 

themselves to computational implementation to estimate the performance of systems still 

on the drawing board, like the GGI-based PIDS algorithm resulting from this project. 

Second, the metrics for overall system performance must improve beyond Pd and FAR. 

Those are important parameters to specify and test, but aspects like intruder tracking 

ability are equally significant. Creating the DTP for this project represented a 

straightforward attempt to combine the most important aspects of a security system, but a 

concentrated effort to make a more comprehensive, universal PIDS performance 

parameter could result in an even better measure. 

 Future studies should aim to optimize GGI arrays and design novel ways to 

eliminate the effect of undesired sources of gravity gradients like snow and rain. The 

cluster geometry full factorial analysis in the previous chapter suggested moderate 

changes to GGI cluster shape had little effect on overall performance, but cluster height, 
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spacing, and number of GGIs per cluster were all somewhat limited variables because 

they were all based on a non-varying cluster GGI pattern. Combining more cluster 

geometry variables with dedicated optimization tools could result in a much better GGI-

based PIDS. Similarly, modeling site design options like advanced underground water 

drainage systems and variable topography could eliminate precipitation and erosion 

concerns. 

 Finally, the results of this study indicate gravity gradiometry is useful for an 

interior security system application. With projected detection and tracking ranges near 

20m and a high tolerance against spoofing techniques, the characteristics make gravity 

gradiometry unique from other security technologies make it ideal for something like 

bank vault security or detecting movement through a hallway. The interior environment 

is more controlled and has a lower range requirement than an outdoor perimeter does. 

Gravity gradiometry can ‘see’ through walls, further expanding its potential application 

options and separating it from current security technology. Future work should identify 

shortfalls in current interior security systems and evaluate gravity gradiometry as an 

interior security system technology. 
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Appendix A: MATLAB Computer Program 
 

 The following program calculates DTP and PFA for intrusion scenarios based on 

user inputs. All input options span the first 21 lines of code following the header. All 

simulations used this code in MATLAB version R2010b to obtain the reported results.  

 
 
 
%*************************************************************************% 
% Jared D. Tuinstra, Air Force Institute of Technology, March 2011 
% 
% This program simulates a physical intrusion detection system and is 
%    intended to evaluate the effectiveness of using gravity gradiometry to 
%    detect a human intruder in a variety of user-controlled circumstances. 
% 
% NOTES:  
% - The characteristics of the gravity gradiometer instrument (GGI) 
%    array geometry and the simulated intruder, as well as GGI instrument 
%    noise and algorithm options is specified in the "User Inputs" block 
%    immediately following this header 
% - The expected (baseline) intruder is a medium, upright human 
% - The default simulated perimeter length is 150m 
% - No outside files are required: adjust user inputs and begin! 
% 
%*************************************************************************% 
clear all; close all; clc; 
  
%% User Inputs 
num_samples=150; %User inputs number of desired simulation runs 
test_for_false_alarm=0; %Available types: 1: Calculates Probability of  
                        % False Alarm, Any other value: Calculates DTP 
scenario_type=2; %Available types: 1:Straight perimeter, 2:Open area 
approach_type=2; %Available types: 1:Constant crawling speed, 2:Constant  
                 % moderate-paced walking speed, 3:Constant running speed 
path_type=1; %Available types: 1:Linear, 2:Snaking 
cluster_type=4; %Available types: 1:Single GGI, 2:Two GGIs, 4:Four pt  
                % cross, 6:Six pt 3-D star 
perimeter_spacing=30; %Cluster to cluster spacing along perimeter, [m]  
                      % {Only used when scenario_type=1} 
int_size=1; %Available types: 1:Medium (baseline), 2:Large, 3:Small 
NSD=0.001; %Noise spectral density, [Hz/Eo^1/2] 
motion_type=1; %Available types: 1:Upright, 2:Prone (crawling) 
cluster_spacing=2; %Distance from center position, [m] 
cluster_height=1; %Distance cluster is above ground, [m] 
GGI_range=18; %Expected effective radius of each GGI cluster, [m] 
  
int_object=1; %Available types: 1:Human, 2:Truck, 3:Rabbit 
rain_type=1; %Available types: 1:No rain, 2:Light rain, 3:Heavy rain 
logic_type=1; %Available types: 1: Each GGI reading given equal weight,  
              % 2: GGI readings averaged in cluster before probabilities  
              % calculated 
  
%************************************************************************* 
% END OF USER INPUTS 
%************************************************************************* 
  
%% Other coded option not investigated for the thesis 
if (int_object==2 || int_object==3) && motion_type==2; 
 error('Only a human can crawl. Modify int_object or motion_type.') 
end 
  
%GGI Cluster Characteristics 
 perimeter_position=50; %Depth location of perimeter on grid, [m] 
 width_center=50; %Width location of cluster center on grid, [m] 
%GGI characteristics 
 prod_rate=1.0; %Rate of signal production, [Hz] 
%Algorithm characteristics 
 expected_sigma_move=10; %Expected moving velocity standard deviation [m/s] 
                         % (used to find probability radius),  
 rain_length=1; %Duration of rain prior to scenario starting, [hrs]  
                % {Use only if rain_type is other than 1} 
 %Baseline intruder characteristics (same as medium human) 
 baseline_mass=76.2; %[kg] 
 human_x=0.45; %Body width, [m] 
 human_y=0.25; %Body thickness, [m] 
 human_z=1.73; %Body height, [m] 
  
%% Assign intruder mass and dimensions 
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switch int_object 
 case 1 
   switch int_size %Indicates the user choice 
    case 1 %Medium person  
      int_dim(1)=76.2; %Body mass, [kg] 
      int_dim(2)=0.45; %Body width, [m] 
      int_dim(3)=0.25; %Body thickness, [m] 
      int_dim(4)=1.73; %Body height, [m] 
    case 2 %Large person 
      int_dim(1)=101.6; 
      int_dim(2)=0.50; 
      int_dim(3)=0.31; 
      int_dim(4)=1.85;     
    case 3 %Small Person 
      int_dim(1)=56.2; 
      int_dim(2)=0.42; 
      int_dim(3)=0.18; 
      int_dim(4)=1.62;      
   end 
 case 2 %Truck dimensions and weight, all values approximate for 2010  
        % Ford F-150 
   int_dim(1)=3629; %Vehicle weight, [kg] {8,000 lbs} 
   int_dim(2)=2.00; %Vehicle width, [m] 
   int_dim(3)=5.50; %Vehicle length, [m] 
   int_dim(4)=1.90; %Vehicle height, [m] 
 case 3 %Rabbit dimensions and weight, notional values and estimations  
        % for Eastern Cottontail Rabbit 
   int_dim(1)=2.27; %Animal weight, [kg] {5 lbs} 
   int_dim(2)=0.152; %Animal width, [m] 
   int_dim(3)=0.254; %Animal length, [m] 
   int_dim(4)=0.127; %Vehicle height, [m] 
end 
     
if motion_type==2 %Reposition dimensions for crawling human 
 int_dim(2,1)=int_dim(1,1); 
 int_dim(2,2)=int_dim(1,2); 
 int_dim(2,3)=int_dim(1,4); 
 int_dim(2,4)=int_dim(1,3); 
end 
  
%% GGI Placement and Grid Size Determination 
switch scenario_type %Places GGIs on grid according to user inputs 
 case 1 
   switch cluster_type 
    case 1 
     for clust=1:ceil(150/perimeter_spacing+1); 
      P(clust,:)=[15+perimeter_spacing*(clust-1), perimeter_position,... 
          -cluster_height]; 
     end 
    case 2 
     for clust=1:ceil(150/perimeter_spacing+1); 
      P(2*clust-1,:)=[15+perimeter_spacing*(clust-1)-cluster_spacing, perimeter_position, -cluster_height]; 
      P(2*clust,:)=[15+perimeter_spacing*(clust-1)+cluster_spacing, perimeter_position, -cluster_height]; 
     end 
    case 4 
     for clust=1:ceil(150/perimeter_spacing+1); 
      P(4*clust-3,:)=[15+perimeter_spacing*(clust-1)-cluster_spacing, perimeter_position, -cluster_height]; 
      P(4*clust-2,:)=[15+perimeter_spacing*(clust-1)+cluster_spacing, perimeter_position, -cluster_height]; 
      P(4*clust-1,:)=[15+perimeter_spacing*(clust-1), perimeter_position-cluster_spacing, -cluster_height]; 
      P(4*clust,:)=[15+perimeter_spacing*(clust-1), perimeter_position+cluster_spacing, -cluster_height]; 
     end 
    case 6 
     for clust=1:ceil(150/perimeter_spacing+1); 
      P(6*clust-5,:)=[15+perimeter_spacing*(clust-1)-cluster_spacing, perimeter_position, -cluster_height]; 
      P(6*clust-4,:)=[15+perimeter_spacing*(clust-1)+cluster_spacing, perimeter_position, -cluster_height]; 
      P(6*clust-3,:)=[15+perimeter_spacing*(clust-1), perimeter_position-cluster_spacing, -cluster_height]; 
      P(6*clust-2,:)=[15+perimeter_spacing*(clust-1), perimeter_position+cluster_spacing, -cluster_height]; 
      P(6*clust-1,:)=[15+perimeter_spacing*(clust-1), perimeter_position, -cluster_height+cluster_spacing]; 
      P(6*clust,:)=[15+perimeter_spacing*(clust-1), perimeter_position, -cluster_height-cluster_spacing];    
     end 
   end 
 case 2 
   clust=1; 
   switch cluster_type 
    case 1 
     P(1,1)=width_center; P(1,2)=perimeter_position; P(1,3)=-cluster_height; 
    case 2 
     P(1,1)=width_center-cluster_spacing; P(1,2)=perimeter_position; P(1,3)=-cluster_height; 
     P(2,1)=width_center+cluster_spacing; P(2,2)=perimeter_position; P(2,3)=-cluster_height; 
    case 4 
     P(1,1)=width_center-cluster_spacing; P(1,2)=perimeter_position; P(1,3)=-cluster_height; 
     P(2,1)=width_center+cluster_spacing; P(2,2)=perimeter_position; P(2,3)=-cluster_height; 
     P(3,1)=width_center; P(3,2)=perimeter_position-cluster_spacing; P(3,3)=-cluster_height; 
     P(4,1)=width_center; P(4,2)=perimeter_position+cluster_spacing; P(4,3)=-cluster_height; 
    case 6    
     P(1,1)=width_center-cluster_spacing; P(1,2)=perimeter_position; P(1,3)=-cluster_height; 
     P(2,1)=width_center+cluster_spacing; P(2,2)=perimeter_position; P(2,3)=-cluster_height; 
     P(3,1)=width_center; P(3,2)=perimeter_position-cluster_spacing; P(3,3)=-cluster_height; 
     P(4,1)=width_center; P(4,2)=perimeter_position+cluster_spacing; P(4,3)=-cluster_height; 
     P(5,1)=width_center; P(5,2)=perimeter_position; P(5,3)=-cluster_height-cluster_spacing; 
     P(6,1)=width_center; P(6,2)=perimeter_position; P(6,3)=-cluster_height+cluster_spacing; 
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   end 
end 
  
GGI_count=size(P,1); 
  
switch scenario_type 
 case 1 
   grid_length=perimeter_spacing*GGI_count/cluster_type+15; 
   grid_depth=100; 
   x_entry_range=[(mean(P(cluster_type*(clust-1)+1:GGI_count,1))-mean(P(1:cluster_type,1)))/2+15- ... 
       perimeter_spacing/2 (mean(P(cluster_type*(clust-1)+1:GGI_count,1))-mean(P(1:cluster_type,1)))/2+15+ ... 
       perimeter_spacing/2]; 
   rad_length=grid_depth-5; 
 case 2 
   grid_length=100; 
   grid_depth=100; 
   rad_length=45; 
end 
  
%% Form Expected GGI Range Area 
GGI_bound=ones(grid_depth,grid_length);  
for GGI_rad_count=1:GGI_count; 
 [PX,PY] = meshgrid((-P(GGI_rad_count,1)+1):(grid_length-P(GGI_rad_count,1)),(-P(GGI_rad_count,2)+1):(grid_depth- ... 
     P(GGI_rad_count,2))); 
 L_GGI_rad=GGI_range<(PX.^2+PY.^2).^0.5; 
 GGI_bound=GGI_bound.*L_GGI_rad; 
end 
  
%%  Calculate true gravity gradient values and allocate arrays 
G=6.67E-11; 
sigma_noise=sqrt(NSD^2*0.5*prod_rate); %Calculate noise standard deviation 
  
Txx_ref=zeros(grid_depth,grid_length,GGI_count); 
Tyy_ref=zeros(grid_depth,grid_length,GGI_count); 
Txy_ref=zeros(grid_depth,grid_length,GGI_count); 
Txz_ref=zeros(grid_depth,grid_length,GGI_count); 
Tyz_ref=zeros(grid_depth,grid_length,GGI_count); 
  
Txx_ref_base=zeros(grid_depth,grid_length,GGI_count); 
Tyy_ref_base=zeros(grid_depth,grid_length,GGI_count); 
Txy_ref_base=zeros(grid_depth,grid_length,GGI_count); 
Txz_ref_base=zeros(grid_depth,grid_length,GGI_count); 
Tyz_ref_base=zeros(grid_depth,grid_length,GGI_count); 
  
r=zeros(GGI_count,8); Txx=zeros(GGI_count,8); Tyy=zeros(GGI_count,8); 
Txy=zeros(GGI_count,8); Txz=zeros(GGI_count,8); Tyz=zeros(GGI_count,8); 
  
count=0; 
  
switch rain_type %Create rain penetration prism 
 case 1 
  soil_depth=0.5; 
  delta_rho_soil=0; 
 case 2 
  soil_depth=0.5; %rain penetration depth, [m] 
  delta_rho_soil=rain_length*0.0025*1000/soil_depth; %kg/m^3 
 case 3 
  soil_depth=0.5; %rain penetration depth, [m] 
  delta_rho_soil=rain_length*0.0076*1000/soil_depth; %kg/m^3 
end 
  
for prism_num=1:2; 
 for grid_pos_x=1:grid_length; 
  for grid_pos_y=1:grid_depth; 
   prisx=[grid_pos_x-int_dim(motion_type,2)/2 grid_pos_x+int_dim(motion_type,2)/2 -1000 1000]; %100-150 
   prisy=[grid_pos_y-int_dim(motion_type,3)/2 grid_pos_y+int_dim(motion_type,3)/2 -1000 1000]; %120-130 
   prisz=[-int_dim(motion_type,4) 0 0 soil_depth]; %-3-3 
   prisrho=[int_dim(motion_type,1)/(int_dim(motion_type,2)*int_dim(motion_type,3)*int_dim(motion_type,4)) ... 
       delta_rho_soil]; 
   x=[prisx(2*prism_num-1) prisx(2*prism_num)]; 
   y=[prisy(2*prism_num-1) prisy(2*prism_num)]; 
   z=[prisz(2*prism_num-1) prisz(2*prism_num)]; 
   rho=prisrho(prism_num); 
   for i=1:2; 
    for j=1:2;    
     for k=1:2; 
      count=count+1; 
      for GGI_num=1:GGI_count; %Closed form gravity gradient equations  
       x_diff=P(GGI_num,1)-x(i); y_diff=P(GGI_num,2)-y(j); z_diff=P(GGI_num,3)-z(k); 
       r=sqrt(x_diff^2+y_diff^2+z_diff^2); 
       Txx(GGI_num,count)=G*rho*10^9*(-1)^(i+j+k)*atan(y_diff*z_diff/(x_diff*r)); 
       Tyy(GGI_num,count)=G*rho*10^9*(-1)^(i+j+k)*atan(x_diff*z_diff/(y_diff*r)); 
       Txy(GGI_num,count)=-G*rho*10^9*(-1)^(i+j+k)*log(z_diff+r); 
       Txz(GGI_num,count)=-G*rho*10^9*(-1)^(i+j+k)*log(y_diff+r); 
       Tyz(GGI_num,count)=-G*rho*10^9*(-1)^(i+j+k)*log(x_diff+r); 
      end 
     end 
    end 
   end 
    for GGI_num1=1:GGI_count; 
     Txx_ref(grid_pos_y,grid_pos_x,GGI_num1)=Txx_ref(grid_pos_y,grid_pos_x,GGI_num1)+sum(Txx(GGI_num1,:)); 
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     Tyy_ref(grid_pos_y,grid_pos_x,GGI_num1)=Tyy_ref(grid_pos_y,grid_pos_x,GGI_num1)+sum(Tyy(GGI_num1,:)); 
     Txy_ref(grid_pos_y,grid_pos_x,GGI_num1)=Txy_ref(grid_pos_y,grid_pos_x,GGI_num1)+sum(Txy(GGI_num1,:)); 
     Txz_ref(grid_pos_y,grid_pos_x,GGI_num1)=Txz_ref(grid_pos_y,grid_pos_x,GGI_num1)+sum(Txz(GGI_num1,:)); 
     Tyz_ref(grid_pos_y,grid_pos_x,GGI_num1)=Tyz_ref(grid_pos_y,grid_pos_x,GGI_num1)+sum(Tyz(GGI_num1,:)); 
    end   
     count=0; 
  end 
   grid_pos_y=0; 
 end 
end 
  
%% Calculate baseline gravity gradients 
if logic_type==2 
 for assign_P_avg=1:clust 
  P_avg(assign_P_avg,1)=mean(P((assign_P_avg-1)*cluster_type+1:(assign_P_avg-1)*cluster_type+cluster_type,1)); 
  P_avg(assign_P_avg,2)=mean(P((assign_P_avg-1)*cluster_type+1:(assign_P_avg-1)*cluster_type+cluster_type,2)); 
  P_avg(assign_P_avg,3)=mean(P((assign_P_avg-1)*cluster_type+1:(assign_P_avg-1)*cluster_type+cluster_type,3)); 
 end 
 P=P_avg;   
 tot_GGI_num=GGI_count; 
 GGI_count=clust; 
end     
  
for grid_pos_x=1:grid_length; 
  for grid_pos_y=1:grid_depth; 
   x=[grid_pos_x-human_x/2 grid_pos_x+human_x/2]; 
   y=[grid_pos_y-human_y/2 grid_pos_y+human_y/2]; 
   z=[-human_z 0]; 
   rho=baseline_mass/(human_x*human_y*human_z); 
   for i=1:2; 
    for j=1:2;    
     for k=1:2; 
      count=count+1; 
      for GGI_num=1:GGI_count; %Closed form gravity gradient equations 
       x_diff=P(GGI_num,1)-x(i); y_diff=P(GGI_num,2)-y(j); z_diff=P(GGI_num,3)-z(k); 
       r=sqrt(x_diff^2+y_diff^2+z_diff^2); 
       Txx(GGI_num,count)=G*rho*10^9*(-1)^(i+j+k)*atan(y_diff*z_diff/(x_diff*r)); 
       Tyy(GGI_num,count)=G*rho*10^9*(-1)^(i+j+k)*atan(x_diff*z_diff/(y_diff*r)); 
       Txy(GGI_num,count)=-G*rho*10^9*(-1)^(i+j+k)*log(z_diff+r); 
       Txz(GGI_num,count)=-G*rho*10^9*(-1)^(i+j+k)*log(y_diff+r); 
       Tyz(GGI_num,count)=-G*rho*10^9*(-1)^(i+j+k)*log(x_diff+r); 
      end 
     end 
    end 
   end 
    for GGI_num1=1:GGI_count; 
     Txx_ref_base(grid_pos_y,grid_pos_x,GGI_num1)=sum(Txx(GGI_num1,:)); 
     Tyy_ref_base(grid_pos_y,grid_pos_x,GGI_num1)=sum(Tyy(GGI_num1,:)); 
     Txy_ref_base(grid_pos_y,grid_pos_x,GGI_num1)=sum(Txy(GGI_num1,:)); 
     Txz_ref_base(grid_pos_y,grid_pos_x,GGI_num1)=sum(Txz(GGI_num1,:)); 
     Tyz_ref_base(grid_pos_y,grid_pos_x,GGI_num1)=sum(Tyz(GGI_num1,:)); 
    end   
     count=0; 
  end 
   grid_pos_y=0; 
end 
  
if logic_type==2 
 GGI_count=tot_GGI_num; 
end 
  
%% Set initial detection conditions and run time loop 
 ctct=1; 
  
for cyc=1:num_samples %start simulation loop 
 t=1; 
  
 Prob_rad=ones(grid_depth,grid_length); 
 if cyc==1 
  tic %Estimate total simulation time 
 end 
  
 switch scenario_type %Determine intruder starting position 
  case 1 
    intrud1_x(1)=x_entry_range(1)+(x_entry_range(2)-x_entry_range(1))*rand(1); 
    intrud1_y(1)=5; 
    x_dumm_fin(1)=0; 
    approach_angle=-90;       
  case 2 
    start_angle=randi(360,1); 
    x_dumm_fin(1)=0; 
    intrud1_x(1)=width_center+44*cosd(start_angle); 
    intrud1_y(1)=perimeter_position+44*sind(start_angle); 
    approach_angle=start_angle;         
  end 
  
 switch approach_type 
  case 1 
    mean_speed=0.3; %slow walk/crawl speed, [m/s] 
  case 2 
    mean_speed=1.5; %medium walk speed, [m/s] 
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  case 3 
    mean_speed=5; %fast jog speed, [m/s] 
 end 
  
 if test_for_false_alarm==1 
    mean_speed=90/3600; %Ensure loop simulates one hour of data collection 
 end 
  
 while (sqrt((intrud1_x(t)-width_center)^2+(intrud1_y(t)-perimeter_position)^2)<rad_length && ... 
         intrud1_y(t)<grid_depth-5) 
  
%% Determine Intruder Path 
 switch path_type %Calculate new intruder position based on path type 
  case 1 
    intrud1_x(t+1)=intrud1_x(t)+mean_speed*cosd(approach_angle+180); 
    intrud1_y(t+1)=intrud1_y(t)+mean_speed*sind(approach_angle+180); 
  case 2 
    y_dumm(1)=0;  
    y_dumm_fin(1)=0; 
    path_rad=5; 
    snake_angle=mean_speed/path_rad*t-pi/2; 
    x_dumm_fin(t+1)=x_dumm_fin(1)+path_rad*cos(snake_angle); 
    y_dumm(t+1)=path_rad+path_rad*sin(snake_angle); 
    y_dumm_fin(t+1)=y_dumm_fin(t)+abs(y_dumm(t+1)-y_dumm(t)); 
    intrud1_x(t+1)=x_dumm_fin(t+1)*cosd(approach_angle+90)-y_dumm_fin(t+1)*sind(approach_angle+90)+intrud1_x(1); 
    intrud1_y(t+1)=x_dumm_fin(t+1)*sind(approach_angle+90)+y_dumm_fin(t+1)*cosd(approach_angle+90)+intrud1_y(1); 
 end 
          
%% Calculate Measured Intruder GG Signal 
  for GGI_num2=1:GGI_count; %Interpolate using intruder position and gravity gradient grid 
   T_true(1,GGI_num2)=interp2(1:grid_length,1:grid_depth,Txx_ref(:,:,GGI_num2),intrud1_x(t),intrud1_y(t)); 
   T_true(2,GGI_num2)=interp2(1:grid_length,1:grid_depth,Tyy_ref(:,:,GGI_num2),intrud1_x(t),intrud1_y(t)); 
   T_true(3,GGI_num2)=interp2(1:grid_length,1:grid_depth,Txy_ref(:,:,GGI_num2),intrud1_x(t),intrud1_y(t)); 
   T_true(4,GGI_num2)=interp2(1:grid_length,1:grid_depth,Txz_ref(:,:,GGI_num2),intrud1_x(t),intrud1_y(t)); 
   T_true(5,GGI_num2)=interp2(1:grid_length,1:grid_depth,Tyz_ref(:,:,GGI_num2),intrud1_x(t),intrud1_y(t)); 
  end 
  if test_for_false_alarm==1 
   T_true=T_true.*0; % Set mean GGI reading to zero for false alarm                  
  end                % calculation(no intruder) 
  T_reading=normrnd(T_true,sigma_noise); %Add noise to measured signal 
  
%% Apply Likelihood Function to grid area 
  switch logic_type 
   case 1 
     Error_reading=ones(grid_depth,grid_length); 
     Error_true=ones(grid_depth,grid_length); 
     for GGI_num3=1:GGI_count; 
      Er1=(T_reading(1,GGI_num3)-Txx_ref_base(:,:,GGI_num3)).^2; 
      Er2=(T_reading(2,GGI_num3)-Tyy_ref_base(:,:,GGI_num3)).^2; 
      Er3=(T_reading(3,GGI_num3)-Txy_ref_base(:,:,GGI_num3)).^2; 
      Er4=(T_reading(4,GGI_num3)-Txz_ref_base(:,:,GGI_num3)).^2; 
      Er5=(T_reading(5,GGI_num3)-Tyz_ref_base(:,:,GGI_num3)).^2; 
      Error_reading=Error_reading.*exp(-1/(2*sigma_noise^2)*(Er1+Er2+Er3+Er4+Er5)); 
     end 
     Prob_best_guess=Error_reading.*Prob_rad; 
   case 2 
     for avg_read=1:clust %Average cluster readings   
      T_reading_avg(1,avg_read)=mean(T_reading(1,(avg_read-1)*cluster_type+1:(avg_read-1)*cluster_type+ ... 
          cluster_type)); 
      T_reading_avg(2,avg_read)=mean(T_reading(2,(avg_read-1)*cluster_type+1:(avg_read-1)*cluster_type+ ... 
          cluster_type)); 
      T_reading_avg(3,avg_read)=mean(T_reading(3,(avg_read-1)*cluster_type+1:(avg_read-1)*cluster_type+ ... 
          cluster_type)); 
      T_reading_avg(4,avg_read)=mean(T_reading(4,(avg_read-1)*cluster_type+1:(avg_read-1)*cluster_type+ ... 
          cluster_type)); 
      T_reading_avg(5,avg_read)=mean(T_reading(5,(avg_read-1)*cluster_type+1:(avg_read-1)*cluster_type+ ... 
          cluster_type)); 
     end 
     Error_reading_clust_avg=ones(grid_depth,grid_length); 
     for clust_ct=1:clust 
      ER1=(T_reading_avg(1,clust_ct)-Txx_ref_base(:,:,clust_ct)).^2; 
      ER2=(T_reading_avg(2,clust_ct)-Tyy_ref_base(:,:,clust_ct)).^2; 
      ER3=(T_reading_avg(3,clust_ct)-Txy_ref_base(:,:,clust_ct)).^2; 
      ER4=(T_reading_avg(4,clust_ct)-Txz_ref_base(:,:,clust_ct)).^2; 
      ER5=(T_reading_avg(5,clust_ct)-Tyz_ref_base(:,:,clust_ct)).^2; 
      Error_reading_clust_avg=Error_reading_clust_avg.*exp(-1/(2*sigma_noise^2)*(ER1+ER2+ER3+ER4+ER5)); 
     end  
     Prob_best_guess=Error_reading_clust_avg.*Prob_rad; 
  end 
  
%% Calculate Most Likely Intruder Positions 
  max_liklihood=max(Prob_best_guess(:)); 
  [r1,c1]=find(Prob_best_guess==max_liklihood); 
  row(t)=r1(1); 
  col(t)=c1(1); 
  
  if size(r1,1)>10; %If no maximum probability, assume no detection 
   if t>1 
    switch scenario_type 
     case 1 
       row(t)=P(find(((row(t-1)-P(:,2)).^2+(col(t-1)-P(:,1)).^2).^0.5==min(((row(t-1)-P(:,2)).^2+ ... 
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           (col(t-1)-P(:,1)).^2).^0.5),1),2); 
       col(t)=P(find(((row(t-1)-P(:,2)).^2+(col(t-1)-P(:,1)).^2).^0.5==min(((row(t-1)-P(:,2)).^2+ ... 
           (col(t-1)-P(:,1)).^2).^0.5),1),1); 
     case 2 
       row(t)=perimeter_position; 
       col(t)=width_center; 
    end 
   else 
    row(t)=1; 
    col(t)=1; 
   end 
  end 
  
  if GGI_bound(row(t),col(t))>0; %Indicate no possible detection 
   row(t)=1; 
   col(t)=1; 
   Prob_rad=ones(grid_depth,grid_length); 
   detection_logic(t)=0; 
  else 
   [X1,Y1] = meshgrid((-col(t)+1):(grid_length-col(t)),(-row(t)+1):(grid_depth-row(t))); 
   radius=(X1.^2+Y1.^2).^0.5;  
   Prob_rad=exp(-1/(2*expected_sigma_move^2).*radius.^2); 
   detection_logic(t)=1; 
  end 
   
  % Calculate true inruder distance and position estimate error 
  r_error(t)=sqrt((intrud1_x(t)-col(t))^2+(intrud1_y(t)-row(t))^2); 
  if scenario_type==1 
   r_true(t)=abs(50.1-intrud1_y(t)); 
  else 
   r_true(t)=sqrt((intrud1_x(t)-width_center)^2+(intrud1_y(t)-perimeter_position)^2); 
  end 
  
  %% Determine if alarm should be sounded 
  if t>2 
   if sum(detection_logic(t-2:t))==3 
    alarm(t)=1; 
   else 
    alarm(t)=0;    
   end 
  else 
   alarm(t)=0;    
  end 
  
  t=t+1; 
 end 
  
 %% Calculate DTP Metrics 
 t_first_detect=find(alarm,1); %time when intruder was first detected 
 if sum(t_first_detect)==0; 
  DTP(cyc)=0; %Indicates intruder not detected at all 
  fprintf('No detect!!!\n') 
  num_alarms=0; 
 else 
  cyc_count(ctct)=cyc;    
  r_true_first_detect(cyc)=r_true(t_first_detect); %true radius from center position/perimeter when intruder  
                                                   % is first detected 
  r_error_alarm_mean(cyc)=mean(r_error(find(r_error.*alarm))); %average position error when intruder is detected 
  num_alarms=length(find(alarm==1)); %total number of alarms 
  num_cycles=max(find(alarm))-t_first_detect+1; %cycles from first alarm to last alarm 
  continuous_trck_param(cyc)=num_alarms/num_cycles; 
  DTP(cyc)=(0.5*r_true_first_detect(cyc)-r_error_alarm_mean(cyc))*continuous_trck_param(cyc); 
  ctct=ctct+1; 
 end 
  
 if test_for_false_alarm==1 %Output P_FA 
  fprintf('-The false detection probability is %2.5f \n',num_alarms/length(alarm)); 
  error('False alarm calculation complete.') 
 end 
  
 if cyc==1 %Allow option to end program if estimated run time is too long 
  cont=input(['Expected run time is ',num2str(toc*(num_samples-1)/60),' more minutes. Continue [1=yes,2=no]? ']); 
    if cont==2 
     error('Program terminated by user') 
    end 
    minutes=clock; 
    fprintf('-Start time is %2.0f:%2.0f \n',minutes(4),minutes(5)); 
 end 
end 
  
%% Print Performance Parameters to Command Window 
DTP_mean=mean(DTP); 
n_req=(1.984*std(DTP)/0.3)^2; %According to two tail student t-test for 95% conifdence level that the true TP_mean  
                              % is within +/-0.5 of the simulate DTP_mean value  
SE_true=1.984*std(DTP)/sqrt(num_samples); 
  
fprintf('-The mean range at first detection is %4.2f\n',mean(r_true_first_detect)) 
fprintf('-The mean position estimate error is %4.2f\n',mean(r_error_alarm_mean)) 
fprintf('-The continuous tracking proportion is %4.2f\n',mean(continuous_trck_param)) 
fprintf('-The mean DTP (+/-%4.2f) is %4.2f\n',SE_true,DTP_mean) 
fprintf('-The the approximate number of samples needed for DTP_mean standard error to be 0.3\r') 
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fprintf('(95 percent confidence) is %4.1f\n', n_req) 
fprintf('-The actual number of samples was %4.0f\n', num_samples) 
  
if int_object==2 || int_object==3 
 fprintf('-The mean range at first detection was %4.3f\n', mean(r_true_first_detect(cyc_count))) 
 fprintf('-The mean position estimate error was %4.3f\n',  mean(r_error_alarm_mean(cyc_count)))    
 fprintf('-The detection likelihood is %4.3f\n',length(cyc_count)/num_samples) 
end     
  
%% Plot Results of Last Simulation to Double Check Configuration 
subplot(2,2,1) 
 hold on; hist(DTP); plot([DTP_mean DTP_mean],[0 num_samples], '--r','LineWidth',2); ... 
     text(min(DTP),90,['Mean DTP is ',num2str(DTP_mean,'%4.2f\n')])  ;axis([min(DTP)-2 max(DTP)+2 0 100]) 
 title('Histogram of DTP values for all Simulations') 
 xlabel('DTP'),ylabel('Number of Instances') 
subplot(2,2,[3 4]) 
 hold on; plot(r_error.*alarm,'^b','MarkerSize',5,'MarkerEdgeColor','b','MarkerFaceColor','b'); ... 
     plot(find(alarm==0), alarm(find(alarm==0)).*20,'o','MarkerEdgeColor','g','MarkerFaceColor','g','MarkerSize', ... 
     6);plot(find(alarm),alarm(find(alarm)).*20,'o','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',6); ... 
     plot(1:t-1,r_true,'k') 
 xlabel('Time (s)'), ylabel('Distance (m)') 
 title('Time History of Alarms, Intruder Range, and Position Estimation Error') 
subplot(2,2,2) 
 hold on; plot(intrud1_x,intrud1_y,'--bo','LineWidth',1,'MarkerEdgeColor','b','MarkerFaceColor','b','MarkerSize',3);  
 plot(col.*alarm,row.*alarm,'o','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',2); ... 
    axis([0 grid_length 0 grid_depth]) 
 text(5,90,['DTP for this run is ',num2str(DTP(cyc),'%4.2f\n')]) 
 switch scenario_type 
  case 1 
    for plot_param=1:clust 
     plot(15+perimeter_spacing*(plot_param-1)+GGI_range*cosd(0:10:360), ... 
         perimeter_position+GGI_range*sind(0:10:360),'--','LineWidth',2,'Color',[0.6 0.6 0.6]); 
    end 
    plot3(P(:,1),P(:,2),P(:,3),'+k') 
  case 2 
    plot(width_center+GGI_range*cosd(0:10:360),perimeter_position+GGI_range*sind(0:10:360),'--','LineWidth', ... 
        2,'Color',[0.6 0.6 0.6]); 
    plot3(P(:,1),P(:,2),P(:,3),'+k') 
 end 
 xlabel('East Axis'), ylabel('North Axis') 
 title('Birds Eye View of Intruder Path and Location Prediction') 
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Appendix B: Tables of Results 
 

 Table 14 through Table 20 shows simulation results for the variable combinations 

discussed in the project methodology discussion. To recap, Table 14 and Table 15 are the 

results of a simple sensitivity analysis showing the effect of change from the baseline 

variable set for the perimeter and open area scenarios. Table 16, Table 17, and Table 18 

show the results of full factorial analyses in the respective areas of cluster geometry, 

intruder size, motion and speed, and GGI noise and algorithm settings. Finally, Table 19 

and Table 20 present GGI-based PIDS simulated effectiveness against the outside 

influences of precipitation absorption into the ground and non-human intruders. 

 All tables in this appendix show the user option settings for every simulation: 

table rows are simulations while table columns show the user settings and algorithm 

performance characteristics. The majority of the variables are spelled out entirely, but the 

‘Scenario’ and ‘Logic Type’ columns use abbreviations to save space. A scenario of ‘P’ 

indicates perimeter scenario, a scenario of ‘OA’ indicates open area scenario, a logic type 

of ‘EW’ indicates equal GGI weighting, and a logic type of ‘AVG’ indicates cluster 

averaging prior to applying the likelihood function. The six columns on the far right of 

every table shows the three parameters used to calculate DTP and the DTP value, as well 

as the number of simulations and false alarm probability. The number of simulations is 

based on the number of samples needed to ensure a maximum DTP confidence interval of 

±0.3—a greater number of simulations indicates a greater DTP spread for that 

combination of user inputs. Since false alarm probability is calculated without an intruder 
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(no-noise gravity gradient of zero), false alarm values are only reported for changes in 

cluster geometry and GGI characteristic user inputs. 

 

Table 14: Sensitivity Results—Perimeter Scenario  

Scenario 
Intruder 
Speed 

Path Type 
Motion 
Position 

Human Size 
GGIs in 
Cluster 

Perimeter 
Spacing 

(m) 

GGI 
Cluster 
Spacing 

(m) 

GGI 
Cluster 
Height 

(m) 

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2) 

Expected 
GGI Range 

(m) 

Logic 
Type 

 Mean Range 
at First 

Detection 
(m) 

Mean 
Position 
Estimate 
Error (m) 

Mean 
Continuous 

Tracking 
Proportion 

Number of 
Simulations 

Detection and 
Tracking 
Parameter 

(±0.3) 

False Alarm 
Probability 

(±0.02) 

BASELINE                           

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

INTRUDER SPEED                           

P Crawl Linear Upright Medium 4 30 2 1 0.001 18 EW 16.82 1.10 0.96 110 7.03 - 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 - 

P Run Linear Upright Medium 4 30 2 1 0.001 18 EW 5.84 1.15 1.00 170 1.77 - 

PATH TYPE                           

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 - 

P Walk Snaking Upright Medium 4 30 2 1 0.001 18 EW 15.17 1.15 0.98 130 6.31 - 

MOTION POSITION                           

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 - 

P Walk Linear Prone Medium 4 30 2 1 0.001 18 EW 13.87 1.27 1.00 110 5.65 - 

HUMAN SIZE                           

P Walk Linear Upright Small 4 30 2 1 0.001 18 EW 11.84 1.72 1.00 110 4.19 - 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 - 

P Walk Linear Upright Large 4 30 2 1 0.001 18 EW 15.92 1.78 1.00 120 6.18 - 

GGIs IN CLUSTER                           

P Walk Linear Upright Medium 1 30 2 1 0.001 18 EW 13.36 3.80 0.93 400 2.59 0.004 

P Walk Linear Upright Medium 2 30 2 1 0.001 18 EW 12.66 1.33 0.99 120 4.96 0.001 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 6 30 2 1  0.001 18 EW 13.82 1.13 1.00 110 5.77 0.000 

PERIMETER SPACING                           

P Walk Linear Upright Medium 4 20 2 1 0.001 18 EW 15.30 1.16 1.00 120 6.49 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 4 40 2 1 0.001 18 EW 11.41 1.45 0.97 300 4.25 0.000 

GGI CLUSTER SPACING                           

P Walk Linear Upright Medium 4 30 1 1 0.001 18 EW 12.58 1.18 1.00 130 5.08 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 4 30 5 1 0.001 18 EW 16.23 1.38 0.99 130 6.70 0.000 

GGI CLUSTER HEIGHT                           

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 4 30 2 3 0.001 18 EW 14.02 1.10 1.00 130 5.91 0.000 

P Walk Linear Upright Medium 4 30 2 5 0.001 18 EW 13.89 0.92 1.00 130 6.01 0.000 

GGI NOISE SPECTRAL DENSITY                           

P Walk Linear Upright Medium 4 30 2 1 0.01 18 EW 41.90 39.76 0.92 130 -17.37 0.876 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.0005 18 EW 13.59 1.09 1.00 130 5.79 0.000 

EXPECTED GGI RANGE                           

P Walk Linear Upright Medium 4 30 2 1 0.001 10 EW 4.67 0.97 0.79 100 1.36 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.001 15 EW 10.03 0.94 1.00 100 4.08 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.001 20 EW 15.79 1.39 0.99 120 6.46 0.001 

P Walk Linear Upright Medium 4 30 2 1 0.001 25 EW 26.27 4.46 0.85 300 7.29 0.036 

P Walk Linear Upright Medium 4 30 2 1 0.001 30 EW 37.11 10.70 0.82 300 6.45 0.221 

LOGIC TYPE                           

P Walk Linear Upright Medium 4 30 2 1 0.001 18 EW 13.87 1.15 1.00 100 5.76 0.000 

P Walk Linear Upright Medium 4 30 2 1 0.001 18 AVG 14.02 2.12 1.00 350 4.88 0.000 
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Table 15: Sensitivity Analysis—Open Area 

Scenario 
Intruder 
Speed 

Path Type 
Motion 
Position 

Human Size 
GGIs in 
Cluster 

GGI 
Cluster 
Spacing 

(m) 

GGI 
Cluster 
Height 

(m) 

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2) 

Expected 
GGI Range 

(m) 

Logic 
Type 

 Mean Range 
at First 

Detection 
(m) 

Mean 
Position 
Estimate 
Error (m) 

Mean 
Continuous 

Tracking 
Proportion 

Number of 
Simulations 

Detection and 
Tracking 
Parameter 

(±0.3) 

False Alarm 
Probability 

(±0.02) 

BASELINE                         

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

INTRUDER SPEED                       - 

OA Crawl Linear Upright Medium 4 2 1 0.001 18 EW 18.79 1.56 0.97 150 7.59 - 

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 - 

OA Run Linear Upright Medium 4 2 1 0.001 18 EW 7.87 1.89 1.00 150 2.04 - 

PATH TYPE                         

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 - 

OA Walk Snaking Upright Medium 4 2 1 0.001 18 EW 16.27 2.17 1.00 170 5.96 - 

MOTION POSITION                         

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 - 

OA Walk Linear Prone Medium 4 2 1 0.001 18 EW 15.98 1.78 1.00 170 6.21 - 

HUMAN SIZE                         

OA Walk Linear Upright Small 4 2 1 0.001 18 EW 14.23 1.98 1.00 170 5.14 - 

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 - 

OA Walk Linear Upright Large 4 2 1 0.001 18 EW 17.79 2.10 1.00 170 6.79 - 

GGIs IN CLUSTER                         

OA Walk Linear Upright Medium 1 2 1 0.001 18 EW 14.65 4.23 0.98 500 3.03 0.001 

OA Walk Linear Upright Medium 2 2 1 0.001 18 EW 15.46 1.69 0.99 300 6.00 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

OA Walk Linear Upright Medium 6 2 1 0.001 18 EW 15.87 1.57 1.00 150 6.35 0.000 

GGI CLUSTER SPACING                         

OA Walk Linear Upright Medium 4 1 1 0.001 18 EW 15.23 1.59 1.00 170 6.01 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

OA Walk Linear Upright Medium 4 5 1 0.001 18 EW 18.65 2.16 1.00 170 7.14 0.000 

GGI CLUSTER HEIGHT                         

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

OA Walk Linear Upright Medium 4 2 3 0.001 18 EW 15.92 1.41 1.00 170 6.54 0.000 

OA Walk Linear Upright Medium 4 2 5 0.001 18 EW 15.87 0.86 1.00 170 7.07 0.000 

GGI NOISE SPECTRAL DENSITY                         

OA Walk Linear Upright Medium 4 2 1 0.01 18 EW 4.48 19.34 0.89 170 0.73 0.784 

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

OA Walk Linear Upright Medium 4 2 1 0.0005 18 EW 15.95 1.61 1.00 170 6.37 0.000 

EXPECTED GGI RANGE                         

OA Walk Linear Upright Medium 4 2 1 0.001 10 EW 8.05 1.97 1.00 150 2.06 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 15 EW 13.06 1.54 1.00 150 4.99 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 20 EW 18.24 2.12 0.99 150 6.94 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 25 EW 27.75 5.47 0.88 150 7.24 0.031 

OA Walk Linear Upright Medium 4 2 1 0.001 30 EW 38.08 10.00 0.88 300 6.97 0.197 

LOGIC TYPE                         

OA Walk Linear Upright Medium 4 2 1 0.001 18 EW 15.90 1.66 1.00 150 6.26 0.000 

OA Walk Linear Upright Medium 4 2 1 0.001 18 AVG 16.05 4.23 1 500 3.79 0.000 

 

 

 



 

120 
 

Table 16: Full Factorial Analysis—Cluster Geometry 

Scenario 
Intruder 
Speed 

Path Type 
Motion 
Position 

Human Size 
GGIs in 
Cluster 

GGI 
Cluster 
Height 

(m) 

GGI 
Cluster 
Spacing 

(m) 

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2) 

Expected 
GGI Range 

(m) 

Logic 
Type 

 Mean Range 
at First 

Detection 
(m) 

Mean 
Position 
Estimate 
Error (m) 

Mean 
Continuous 

Tracking 
Proportion 

Number of 
Simulations 

Detection and 
Tracking 
Parameter 

(±0.2) 

False Alarm 
Probability 

(±0.02) 

GGIs IN CLUSTER and GGI CLUSTER SPACING and GGI CLUSTER HEIGHT                       

OA Walk Linear Upright Medium 1 1 - 0.001 18 EW 14.55 4.53 0.99 300 2.71 0.001 

OA Walk Linear Upright Medium 1 3 - 0.001 18 EW 14.81 1.79 0.98 350 5.44 0.001 

OA Walk Linear Upright Medium 1 5 - 0.001 18 EW 15.15 1.32 0.96 350 5.90 0.003 

OA Walk Linear Upright Medium 2 1 1 0.001 18 EW 14.73 2.06 1.00 350 5.29 0.000 

OA Walk Linear Upright Medium 2 1 2 0.001 18 EW 15.64 1.65 0.99 350 6.11 0.000 

OA Walk Linear Upright Medium 2 1 4 0.001 18 EW 17.02 1.70 0.99 200 6.72 0.001 

OA Walk Linear Upright Medium 2 1 6 0.001 18 EW 17.59 1.57 0.99 200 7.12 0.001 

OA Walk Linear Upright Medium 2 3 1 0.001 18 EW 14.59 1.33 1.00 200 5.94 0.000 

OA Walk Linear Upright Medium 2 3 2 0.001 18 EW 15.49 1.45 1.00 200 6.28 0.000 

OA Walk Linear Upright Medium 2 3 4 0.001 18 EW 16.78 1.36 0.99 200 6.94 0.001 

OA Walk Linear Upright Medium 2 3 6 0.001 18 EW 17.98 1.48 0.99 200 7.36 0.000 

OA Walk Linear Upright Medium 2 5 1 0.001 18 EW 14.89 0.89 0.99 200 6.51 0.000 

OA Walk Linear Upright Medium 2 5 2 0.001 18 EW 15.80 0.93 0.99 200 6.85 0.001 

OA Walk Linear Upright Medium 2 5 4 0.001 18 EW 16.76 0.95 0.98 200 7.29 0.001 

OA Walk Linear Upright Medium 2 5 6 0.001 18 EW 17.91 1.00 0.98 200 7.75 0.001 

OA Walk Linear Upright Medium 4 1 1 0.001 18 EW 15.18 1.67 1.00 200 5.91 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 18 EW 15.91 1.61 1.00 200 6.33 0.000 

OA Walk Linear Upright Medium 4 1 4 0.001 18 EW 17.62 1.93 1.00 200 6.86 0.000 

OA Walk Linear Upright Medium 4 1 6 0.001 18 EW 19.58 2.18 1.00 200 7.57 0.000 

OA Walk Linear Upright Medium 4 3 1 0.001 18 EW 15.16 1.28 1.00 200 6.29 0.000 

OA Walk Linear Upright Medium 4 3 2 0.001 18 EW 15.79 1.41 1.00 200 6.47 0.000 

OA Walk Linear Upright Medium 4 3 4 0.001 18 EW 17.52 1.70 1.00 200 7.04 0.000 

OA Walk Linear Upright Medium 4 3 6 0.001 18 EW 19.48 1.93 1.00 200 7.77 0.000 

OA Walk Linear Upright Medium 4 5 1 0.001 18 EW 15.13 0.80 1.00 200 6.76 0.000 

OA Walk Linear Upright Medium 4 5 2 0.001 18 EW 15.94 0.83 1.00 200 7.13 0.000 

OA Walk Linear Upright Medium 4 5 4 0.001 18 EW 17.65 0.83 1.00 200 7.97 0.000 

OA Walk Linear Upright Medium 4 5 6 0.001 18 EW 19.45 0.83 1.00 200 8.86 0.000 

OA Walk Linear Upright Medium 6 1 1 0.001 18 EW 15.17 1.57 1.00 200 6.01 0.000 

OA Walk Linear Upright Medium 6 1 2 0.001 18 EW 15.94 1.59 1.00 200 6.38 0.000 

OA Walk Linear Upright Medium 6 1 4 0.001 18 EW 17.65 1.89 1.00 200 6.93 0.000 

OA Walk Linear Upright Medium 6 1 6 0.001 18 EW 19.35 2.18 1.00 200 7.47 0.000 

OA Walk Linear Upright Medium 6 3 1 0.001 18 EW 15.05 1.25 1.00 200 6.27 0.000 

OA Walk Linear Upright Medium 6 3 2 0.001 18 EW 15.95 1.40 1.00 200 6.56 0.000 

OA Walk Linear Upright Medium 6 3 4 0.001 18 EW 17.63 1.67 1.00 200 7.14 0.000 

OA Walk Linear Upright Medium 6 3 6 0.001 18 EW 19.35 1.89 1.00 200 7.77 0.000 

OA Walk Linear Upright Medium 6 5 1 0.001 18 EW 14.98 0.86 1.00 200 6.63 0.000 

OA Walk Linear Upright Medium 6 5 2 0.001 18 EW 15.96 1.00 1.00 200 6.97 0.000 

OA Walk Linear Upright Medium 6 5 4 0.001 18 EW 17.77 1.15 1.00 200 7.71 0.000 

OA Walk Linear Upright Medium 6 5 6 0.001 18 EW 19.28 1.10 1.00 200 8.51 0.000 
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Table 17: Full Factorial Analysis—Intruder Size, Motion, and Speed 

Scenario 
Intruder 
Speed 

Path Type 
Motion 
Position 

Human 
Size 

GGIs in 
Cluster 

GGI 
Cluster 
Height 

(m) 

GGI 
Cluster 
Spacing 

(m) 

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2) 

Expected 
GGI Range 

(m) 

Logic 
Type 

 Mean Range 
at First 

Detection 
(m) 

Mean 
Position 
Estimate 
Error (m) 

Mean 
Continuous 

Tracking 
Proportion 

Number of 
Simulations 

Detection and 
Tracking 
Parameter 

(±0.3) 

INTRUDER SPEED and PATH TYPE and MOTION POSITION and HUMAN SIZE                   

OA Crawl Linear Upright Small 4 1 2 0.001 18 EW 16.99 1.86 0.97 80 6.45 

OA Crawl Linear Upright Medium 4 1 2 0.001 18 EW 18.84 1.57 0.97 80 7.72 

OA Crawl Linear Upright Large 4 1 2 0.001 18 EW 20.84 2.06 0.97 80 8.08 

OA Crawl Linear Prone Small 4 1 2 0.001 18 EW 16.97 2.09 0.97 80 6.21 

OA Crawl Linear Prone Medium 4 1 2 0.001 18 EW 18.86 1.80 0.97 80 7.41 

OA Crawl Linear Prone Large 4 1 2 0.001 18 EW 20.55 2.21 0.97 80 7.81 

OA Crawl Snaking Upright Small 4 1 2 0.001 18 EW 17.07 2.35 0.97 80 6.00 

OA Crawl Snaking Upright Medium 4 1 2 0.001 18 EW 18.89 2.09 0.98 80 7.18 

OA Crawl Snaking Upright Large 4 1 2 0.001 18 EW 21.12 2.66 0.97 80 7.62 

OA Crawl Snaking Prone Small 4 1 2 0.001 18 EW 16.96 2.91 0.97 80 5.37 

OA Crawl Snaking Prone Medium 4 1 2 0.001 18 EW 18.79 2.49 0.97 80 6.72 

OA Crawl Snaking Prone Large 4 1 2 0.001 18 EW 21.20 2.90 0.97 80 7.45 

OA Walk Linear Upright Small 4 1 2 0.001 18 EW 14.06 1.92 1.00 80 5.11 

OA Walk Linear Upright Medium 4 1 2 0.001 18 EW 15.91 1.59 1.00 80 6.36 

OA Walk Linear Upright Large 4 1 2 0.001 18 EW 17.79 2.08 1.00 80 6.81 

OA Walk Linear Prone Small 4 1 2 0.001 18 EW 14.10 2.00 1.00 60 5.05 

OA Walk Linear Prone Medium 4 1 2 0.001 18 EW 16.10 1.80 1.00 60 6.25 

OA Walk Linear Prone Large 4 1 2 0.001 18 EW 17.98 2.26 1.00 60 6.71 

OA Walk Snaking Upright Small 4 1 2 0.001 18 EW 14.97 2.39 1.00 60 5.10 

OA Walk Snaking Upright Medium 4 1 2 0.001 18 EW 16.09 2.15 1.00 60 5.88 

OA Walk Snaking Upright Large 4 1 2 0.001 18 EW 18.39 2.77 0.99 60 6.38 

OA Walk Snaking Prone Small 4 1 2 0.001 18 EW 14.86 2.96 1.00 60 4.46 

OA Walk Snaking Prone Medium 4 1 2 0.001 18 EW 16.02 2.50 1.00 60 5.51 

OA Walk Snaking Prone Large 4 1 2 0.001 18 EW 17.87 2.99 1.00 60 5.92 

OA Run Linear Upright Small 4 1 2 0.001 18 EW 5.65 2.14 1.00 100 0.68 

OA Run Linear Upright Medium 4 1 2 0.001 18 EW 7.96 1.81 1.00 100 2.17 

OA Run Linear Upright Large 4 1 2 0.001 18 EW 9.89 2.35 1.00 100 2.60 

OA Run Linear Prone Small 4 1 2 0.001 18 EW 5.65 2.80 1.00 100 0.02 

OA Run Linear Prone Medium 4 1 2 0.001 18 EW 7.70 2.35 1.00 100 1.50 

OA Run Linear Prone Large 4 1 2 0.001 18 EW 9.60 2.59 1.00 100 2.21 

OA Run Snaking Upright Small 4 1 2 0.001 18 EW 12.34 2.14 1.00 100 4.03 

OA Run Snaking Upright Medium 4 1 2 0.001 18 EW 13.88 1.86 1.00 100 5.08 

OA Run Snaking Upright Large 4 1 2 0.001 18 EW 15.07 2.54 1.00 100 4.99 

OA Run Snaking Prone Small 4 1 2 0.001 18 EW 12.56 2.63 1.00 100 3.65 

OA Run Snaking Prone Medium 4 1 2 0.001 18 EW 13.55 2.65 1.00 100 4.13 

OA Run Snaking Prone Large 4 1 2 0.001 18 EW 14.84 3.05 1.00 100 4.37 

 

 

 



 

122 
 

Table 18: Full Factorial Analysis—GGI Noise and Algorithm 

Scenario 
Intruder 
Speed 

Path 
Type 

Motion 
Position 

Human 
Size 

GGIs in 
Cluster 

GGI 
Cluster 
Height 

(m) 

GGI Cluster 
Spacing (m)

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2) 

Expected 
GGI Range 

(m) 

Logic 
Type 

 Mean Range 
at First 

Detection 
(m) 

Mean 
Position 
Estimate 
Error (m) 

Mean 
Continuous 

Tracking 
Proportion 

Number of 
Simulations 

Detection and 
Tracking 
Parameter 

(±0.3) 

False Alarm 
Probability 

(±0.02) 

NOISE SPECTRAL DENSITY and EXPECTED GGI RANGE and LOGIC TYPE                   

OA Walk Linear Upright Medium 4 1 2 0.01 10 EW 15.48 3.52 0.78 170 2.81 0.021 

OA Walk Linear Upright Medium 4 1 2 0.01 10 AVG 12.84 3.59 0.85 170 2.08 0.014 

OA Walk Linear Upright Medium 4 1 2 0.01 15 EW 38.34 17.08 0.74 170 1.43 0.555 

OA Walk Linear Upright Medium 4 1 2 0.01 15 AVG 38.45 15.38 0.71 170 2.64 0.437 

OA Walk Linear Upright Medium 4 1 2 0.01 18 EW 40.17 19.32 0.64 170 0.64 0.789 

OA Walk Linear Upright Medium 4 1 2 0.01 18 AVG 40.39 17.31 0.88 170 2.54 0.762 

OA Walk Linear Upright Medium 4 1 2 0.01 20 EW 40.74 19.85 0.94 170 0.47 0.877 

OA Walk Linear Upright Medium 4 1 2 0.01 20 AVG 40.80 17.61 0.95 170 2.64 0.873 

OA Walk Linear Upright Medium 4 1 2 0.001 10 EW 8.04 2.25 1.00 170 1.77 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 10 AVG 8.17 1.63 1.00 170 2.46 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 15 EW 13.28 1.77 1.00 170 4.87 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 15 AVG 13.32 2.23 1.00 170 4.43 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 18 EW 15.92 1.76 1.00 170 6.20 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 18 AVG 16.04 3.21 1.00 170 4.81 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 20 EW 18.18 2.23 0.99 150 6.80 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 20 AVG 18.32 4.35 0.99 150 4.73 0.000 

OA Walk Linear Upright Medium 4 1 2 0.001 25 EW 28.24 5.32 0.88 150 7.66 0.033 

OA Walk Linear Upright Medium 4 1 2 0.001 25 AVG 28.76 8.08 0.90 150 5.55 0.028 

OA Walk Linear Upright Medium 4 1 2 0.001 30 EW 35.97 9.71 0.88 180 7.28 0.213 

OA Walk Linear Upright Medium 4 1 2 0.001 30 AVG 37.86 10.91 0.91 180 7.24 0.331 

OA Walk Linear Upright Medium 4 1 2 0.0005 10 EW 8.04 2.34 1.00 180 1.68 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 10 AVG 8.09 1.54 1.00 180 2.50 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 15 EW 13.04 1.76 1.00 180 4.76 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 15 AVG 13.25 2.78 1.00 180 3.85 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 18 EW 16.02 1.61 1.00 180 6.40 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 18 AVG 16.08 3.88 1.00 180 4.16 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 20 EW 18.05 1.64 1.00 180 7.39 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 20 AVG 18.25 4.69 1.00 180 4.43 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 25 EW 23.31 2.72 0.99 180 8.83 0.001 

OA Walk Linear Upright Medium 4 1 2 0.0005 25 AVG 23.57 6.33 0.99 180 5.38 0.000 

OA Walk Linear Upright Medium 4 1 2 0.0005 30 EW 30.68 5.20 0.94 180 9.41 0.010 

OA Walk Linear Upright Medium 4 1 2 0.0005 30 AVG 31.65 8.36 0.94 180 7.01 0.008 

 

 

 



 

123 
 

Table 19: Precipitation Effects 

Scenario 
Intruder 
Speed 

Path 
Type 

Motion 
Position 

Human 
Size 

Rain 
Type 

GGIs in 
Cluster 

GGI 
Cluster 
Height 

(m) 

GGI 
Cluster 
Spacing 

(m) 

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2) 

Perimeter 
Spacing 

(m) 

Expected 
GGI Range 

(m) 

Logic 
Type 

 Mean Range 
at First 

Detection 
(m) 

Mean 
Position 
Estimate 
Error (m) 

Mean 
Continuous 

Tracking 
Proportion 

Number of 
Simulations 

Detection 
and 

Tracking 
Parameter 

(±0.3) 

False Alarm 
Probability 

(±0.02) 

PRECIPITATION TYPE and HUMAN SIZE                             

P Walk Linear Upright Small None 4 1 2 0.001 30 18 EW 11.81 1.64 1.00 180 4.26 0.000 

P Walk Linear Upright Small Light 4 1 2 0.001 30 18 EW 10.87 1.85 1.00 180 3.58 0.000 

P Walk Linear Upright Small Heavy 4 1 2 0.001 30 18 EW 8.99 2.15 1.00 180 2.34 0.000 

P Walk Linear Upright Medium None 4 1 2 0.001 30 18 EW 13.77 1.17 1.00 180 5.71 - 

P Walk Linear Upright Medium Light 4 1 2 0.001 30 18 EW 12.82 1.11 1.00 180 5.30 - 

P Walk Linear Upright Medium Heavy 4 1 2 0.001 30 18 EW 10.79 1.26 1.00 180 4.14 - 

P Walk Linear Upright Large None 4 1 2 0.001 30 18 EW 16.07 1.77 1.00 180 6.23 - 

P Walk Linear Upright Large Light 4 1 2 0.001 30 18 EW 14.47 1.53 1.00 180 5.70 - 

P Walk Linear Upright Large Heavy 4 1 2 0.001 30 18 EW 12.58 1.28 1.00 180 5.01 - 

 

Table 20: Intruder Type Effects 

Scenario 
Intruder 
Speed 

Path 
Type 

Motion 
Position 

Intruder Type 
GGIs in 
Cluster

GGI 
Cluster 
Height 

(m) 

GGI 
Cluster 
Spacing 

(m) 

GGI Noise 
Spectral 
Density  

(Eö/Hz1/2)

Perimeter 
Spacing 

(m) 

Expected 
GGI 

Range 
(m) 

Logic 
Type

Number of 
Simulations 

 Mean 
Range at 

First 
Detection 

(m) 

Mean 
Position 
Estimate 
Error (m) 

Proportion of 
Simulations 

that Triggered 
at Least One 

Alarm 

PRECIPITATION TYPE and HUMAN SIZE                               

P Walk Linear - Rabbit 4 1 2 0.001 30 10 EW 150 0.59 47.29 0.267 

P Walk Linear - Rabbit 4 1 2 0.001 30 15 EW 150 1.36 5.70 0.360 

P Walk Linear - Rabbit 4 1 2 0.001 30 18 EW 150 2.18 6.94 0.400 

P Walk Linear - Rabbit 4 1 2 0.001 30 20 EW 150 3.52 10.93 0.320 

P Walk Linear - Rabbit 4 1 2 0.001 30 25 EW 150 17.87 41.24 0.907 

P Walk Linear - Rabbit 4 1 2 0.001 30 30 EW 150 33.96 58.17 1.000 

P Walk Linear Upright Medium Human 4 1 2 0.001 30 10 EW 150 4.36 1.02 0.767 

P Walk Linear Upright Medium Human 4 1 2 0.001 30 15 EW 150 10.37 1.07 1.000 

P Walk Linear Upright Medium Human 4 1 2 0.001 30 18 EW 150 13.76 1.15 1.000 

P Walk Linear Upright Medium Human 4 1 2 0.001 30 20 EW 150 16.05 1.45 1.000 

P Walk Linear Upright Medium Human 4 1 2 0.001 30 25 EW 150 26.83 4.89 1.000 

P Walk Linear Upright Medium Human 4 1 2 0.001 30 30 EW 150 36.87 9.84 1.000 

P Walk Linear - Large Vehicle 4 1 2 0.001 30 10 EW 150 35.52 18.83 1.000 

P Walk Linear - Large Vehicle 4 1 2 0.001 30 15 EW 150 42.10 20.23 1.000 

P Walk Linear - Large Vehicle 4 1 2 0.001 30 18 EW 150 42.10 20.29 1.000 

P Walk Linear - Large Vehicle 4 1 2 0.001 30 20 EW 150 42.10 20.42 1.000 
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